Electrical transport (90–300 K) and magnetic (5–375 K) properties of the La0.67Ca0.33MnO3 + x% V2O5 (x = 0, 2, 5, 15 and 30) type magnetic–nonmagnetic composite system show appreciable grain boundary contribution. These composites, except for the one with x = 30%, show metal–insulator transitions at T = Tp which decrease with increasing V2O5 concentration. The high temperature (T > Tp) semiconducting part of the resistivity (ρ) data follow a small polaron hopping conduction mechanism. The magnetoresistance (MR) in this system increases with increasing V2O5 content, showing a maximum value (25% at 93 K and field H = 1.15 T) for the sample with x = 15%. Spin polarization is considered to be responsible for such an increase of MR. Neither thermoelectric power (between 90 and 300 K) nor magnetization data indicate any noticeable change of the Curie temperature (TC) with change of x, suggesting that V2O5 remains at the grain boundary. The complex impedance (Z*) of the composite system, measured over a frequency range of 0.01 kHz–13 MHz, at 300 K shows strong frequency dependence and the impedance plane plots (Z′–Z″) are semicircular for different V2O5 content. An equivalent resistor–capacitor circuit (Rg (Rgb Cgb)) has been proposed to explain the impedance results in this composite system.
Shubnikov-de Haas (SdH) effect and magnetoresistance measurements of single crystals of diluted II-V magnetic semiconductors (Cd Zn Mn )As (x + y = 0.4, y = 0.04 and 0.08) are investigated in the temperature range T = 4.2 ÷ 300 K and in transverse magnetic field B = 0 ÷ 25 T. The values of the cyclotron mass m , the effective g-factor g*, and the Dingle temperature T are defined. In one of the samples (y = 0.04) a strong dependence of the cyclotron mass on the magnetic field m (B) = m(0) + αB is observed. The value of a phase shift close to β = 0.5 indicates the presence of Berry phase and 3D Dirac fermions in a single crystals of (Cd Zn Mn )As in one of the samples (y = 0.08).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.