The present study was performed to determine the histological, ultrastructural, and radiographic changes that occur over time at intramuscular BMP-9 gene therapy treatment sites. Several members of the bone morphogenetic protein (BMP) family have the potential to induce osteochondrogenesis when the protein is delivered to rodents, canines, rabbits, and nonhuman primates. Previous studies have also demonstrated that BMP gene therapy utilizing adenoviral vectors can also stimulate orthotopic and heterotopic bone formation in rodents and rabbits. Athymic nude and Sprague-Dawley rats were injected with Ad-BMP-9 or Ad-beta-Gal (3.75 x 10(9) particles) in their thigh musculature and light microscopic, electron microscopic, and computerized tomography analysis was performed 3, 6, 9, 12, 15, 18, 21, and 100 days later. To assess early mesenchymal cell proliferation, a bromodeoxyuridine (BrdU) immunohistochemical analysis was also performed 48, 60, and 72 hr postinjection in athymic nude rats. All animals demonstrated extensive endochondral bone formation at the Ad-BMP-9 treatment sites within 3 weeks. The Sprague-Dawley rats also exhibited a massive, acute inflammatory infiltrate during the first week. Proliferating mesenchymal stem cells were clearly evident as early as 2 days after treatment, which differentiated into small or hypertrophied chondrocytes during the next week. During the third week, the cartilaginous matrix mineralized and formed woven bone, which converted to lamellar bone by 3 months. No evidence of bone formation was demonstrated at the Ad-beta-Gal injection sites in the athymic nude or Sprague-Dawley rats. In addition, no cellular proliferation was seen at the Ad-beta-Gal treatment sites in the athymic nude animals as assessed by light microscopy and BrdU immunohistochemistry. The extensive bone formation induced by Ad-BMP-9 suggests that BMP gene therapy may have potential utility in the treatment of degenerative, rheumatic, or traumatic bone pathology.
The greater palatine foramen injection is an appropriate method to minimize bleeding during endoscopic sinus surgery. The authors recommend an injection depth of 25 mm in adults to minimize the risk of intraorbital complications.
Bone morphogenetic proteins (BMPs) are polypeptides that induce ectopic bone formation in standard rat in vivo assay systems. Previous studies have demonstrated the clinical utility of these proteins in spinal fusion, fracture healing, and prosthetic joint stabilization. Gene therapy is also a theoretically attractive technique to express BMPs clinically, since long-term, regulatable gene expression and systemic delivery with tissue-specific expression may be possible in future. This study was performed to determine whether an adenoviral vector containing the BMP-2 gene can be used to express BMP-2 in vitro and promote endochondral bone formation in vivo. In vitro, U87 MG cells transduced per cell with 20 MOI of an adenoviral construct containing the BMP-2 gene under the control of the universal CMV promoter (Ad-BMP-2) showed positive antibody staining for the BMP-2 protein at posttransfection day 2. The synthesis and secretion of active BMP-2 into the conditioned medium of Ad-BMP-2-transduced 293 cells were confirmed by Western blot analysis and the induction of alkaline phosphatase activity in a W-20 stromal cell assay. In vivo, Sprague-Dawley rats and athymic nude rats were injected with Ad-BMP-2 in the thigh musculature and were sacrificed on day 3, 6, 9, 12, 16, 21, 60, and 110 for histological analysis. The Sprague-Dawley rats showed evidence of acute inflammation, without ectopic bone formation, at the injection sites. In the athymic nude rats, BMP-2 gene therapy induced mesenchymal stem cell chemotaxis and proliferation, with subsequent differentiation to chondrocytes. The chondrocytes secreted a cartilaginous matrix, which then mineralized and was replaced by mature bone. This study demonstrates that a BMP-2 adenoviral vector can be utilized to produce BMP-2 by striated muscle cells in athymic nude rats, leading to endochondral bone formation. However, in immunocompetent animals the endochondral response is attenuated, secondary to the massive immune response elicited by the first-generation adenoviral construct.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.