Freely standing thin liquid films containing supramolecular structures including micelles, nanoparticles, polyelectrolyte-surfactant complexes, and smectic liquid crystals undergo drainage via stratification. The layer-by-layer removal of these supramolecular structures manifests as stepwise thinning over time and a coexistence of domains and nanostructures of discretely different thickness. The layering of supramolecular structures in confined thin films contributes additional non-DLVO, supramolecular oscillatory surface forces to disjoining pressure, thus influencing both drainage kinetics and stability of thin films. Understanding and characterizing the spontaneous creation and evolution of nanoscopic topography of stratifying, freely standing thin liquid films have been long-standing challenges due to the absence of experimental techniques with the requisite spatial (thickness <10 nm) and temporal resolution (<1 ms). Using Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols developed herein, we visualize and characterize size, shape, and evolution kinetics of nanoscopic mesas, terraces, and ridges. The exquisite thickness maps created using IDIOM protocols provide much needed and unprecedented insights into the role of supramolecular oscillatory surface forces in driving growth of such nanostructures as well as in controlling properties and stability of freely standing thin films and, more generally, of colloidal dispersions like foams.
Freestanding films of soft matter containing micelles, nanoparticles, polyelectrolyte-surfactant complexes, bilayers, and smectic liquid crystals exhibit stratification. Stepwise thinning and coexisting thick-thin regions associated with drainage via stratification are attributed to the confinement-induced structuring and layering of supramolecular structures, which contribute supramolecular oscillatory structural forces. In freestanding micellar films, formed by a solution of an ionic surfactant above its critical micelle concentration, both interfacial adsorption and the micelle size and shape are determined by the concentration of surfactant and of added electrolytes. Although the influence of surfactant concentration on stratification has been investigated before, the influence of added salt, at concentrations typically found in water used on a daily basis, has not been investigated yet. In this contribution, we elucidate how the addition of salt affects stepwise thinning: step size, number of steps, as well as the shape and size of nanoscopic nonflat structures such as mesas in micellar foam films formed with aqueous solutions of anionic surfactant (sodium dodecyl sulfate (SDS)). The nanoscopic thickness variations and transitions are visualized and analyzed using IDIOM (Interferometry Digital Imaging Optical Microscopy) protocols with exquisite spatiotemporal resolution (thickness ∼1 nm, time <1 ms). In contrast to nanoparticle dispersions that show no influence of salt on step size, we find that the addition of salt to micellar freestanding films results in a decrease in step size as well as the number of stepwise transitions, in addition to changes in nucleation and growth of mesas, all driven by the corresponding change in supramolecular oscillatory structural forces.
We report the discovery and analysis of spinodal stratification, a hitherto unreported mechanism underlying drainage and rupture of micellar foam films, that presents unexplored opportunities for understanding and controlling the stability, lifetime and properties of ubiquitous foams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.