Significance
We provide new, exciting evidence for a previously unidentified signaling pathway that mechanistically links mitochondrial respiratory chain defects to necrosis and heart failure induced by the chemotherapy agent doxorubicin (DOX). We specifically show that DOX disrupts protein complexes between the key respiratory chain proteins, including uncoupling protein 3 and cytochrome
c
oxidase, resulting in abnormal mitochondrial respiration and necrosis through a mechanism contingent on Bcl-2-like 19kDa-interacting protein 3 (Bnip3). Perhaps most compelling is our finding that inhibiting Bnip3 completely abrogated the cardiotoxic effects of DOX. These exciting findings have important clinical implications not only for preventing heart failure by targeting Bnip3 in cancer patients undergoing chemotherapy, but also for understanding the pathogenesis of other diseases in which mitochondrial function is compromised.
Diabetic neuropathy affects approximately 50% of diabetic patients. Down-regulation of mitochondrial gene expression and function has been reported in both human tissues and in dorsal root ganglia (DRG) from animal models of type 1 and type 2 diabetes. We hypothesized that loss of direct insulin signaling in diabetes contributes to loss of mitochondrial function in DRG neurons and to development of neuropathy. Sensory neurons obtained from age-matched adult control or streptozotocin (STZ)-induced type 1 diabetic rats were cultured with or without insulin before determining mitochondrial respiration and expression of mitochondrial respiratory chain and insulin signaling-linked proteins. For in vivo studies age-matched control rats and diabetic rats with or without trace insulin supplementation were maintained for 5 months before DRG were analyzed for respiratory chain gene expression and cytochrome c oxidase activity. Insulin (10nM) significantly (P<0.5) increased phosphorylation of Akt and P70S6K by 4-fold and neurite outgrowth by 2-fold in DRG cultures derived from adult control rats. Insulin also augmented the levels of selective mitochondrial respiratory chain proteins and mitochondrial bioenergetics parameters in DRG cultures from control and diabetic rats, with spare respiratory capacity increased by up to 3-fold (P<0.05). Insulin-treated diabetic animals exhibited improved thermal sensitivity in the hind paw and had increased dermal nerve density compared to untreated diabetic rats, despite no effect on blood glucose levels. In DRG of diabetic rats there was suppressed expression of mitochondrial respiratory chain proteins and cytochrome c oxidase activity that was corrected by insulin therapy. Insulin elevates mitochondrial respiratory chain protein expression and function in sensory neurons and this is associated with enhanced neurite outgrowth and protection against indices of neuropathy.
Altered cellular metabolism is considered a hallmark of cancer and is fast becoming an avenue for therapeutic intervention. Mitochondria have recently been viewed as an important cellular compartment that fuels the metabolic demands of cancer cells. Mitochondria are the major source of ATP and metabolites necessary to fulfill the bioenergetics and biosynthetic demands of cancer cells. Furthermore, mitochondria are central to cell death and the main source for generation of reactive oxygen species (ROS). Overall, the growing evidence now suggests that mitochondrial bioenergetics, biogenesis, ROS production, and adaptation to intrinsic oxidative stress are elevated in chronic lymphocytic leukemia (CLL). Hence, recent studies have shown that mitochondrial metabolism could be targeted for cancer therapy. This review focuses the recent advancements in targeting mitochondrial metabolism for the treatment of CLL.
Simultaneous evaluation of two mitochondrial bioenergetics parameters, respiration rates and mitochondrial membrane potential (mtMP) can be useful to determine the mitochondrial dysfunction under various pathological conditions including neurodegenerative diseases and diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.