The present study reports the preparation and characterization of silica-based immobilization matrices for the purpose of metal accumulation using immobilized cyanobacterium Nostoc calcicola. Silica gel was prepared using aqueous sodium silicate and colloidal silica. Calcium alginate (CAG) beads were coated with silica using sodium silicate solutions. Microscopy observations and TTC tests confirmed that the immobilized cells were intact and viable. Ultrastructural studies with electron microscopy revealed a membrane thickness of approximately 10 μm around the CAG and the silica gel to be of mesoporous nature. BET surface area of silica gel-immobilized N. calcicola was 160 m 2 g −1 . The porous volume and average pore diameter were 0.40 cm 3 g −1 and ca. 100 Å, respectively, as calculated using the BJH model. Studies on silica-coated calcium alginate immobilized cells showed that these were superior to the uncoated CAG beads in terms of mechanical strength and metal accumulation. The silica matrices were found to be stable for repeated cycles of metal removal and with commonly used eluants for desorption processes. These matrices have potential applications in immobilization of industrially important biocatalysts.
Abstract:Addition of nutrients is a promising strategy for maximizing growth of Nostoc calcicola. To assess the feasibility of Allen and Arnon's (AA) media addition to increase the biomass productivity, (0, 2.5, 5, 7.5 ml of 10x media concentrate -MC) was added to aerated culture every six days, in two separate conditions i.e., single harvest (SH) and continuous harvest (CH) after 15 th day. Results show that with addition of 5 ml of MC produced maximum amount of biomass is 1.32 g/L and 2.88 g/L for Sh and CH respectively. These results show that with addition of 5 ml of MC to an aerated culture every six days with continuous biomass harvesting leads to maximum growth of Nostoc calcicola @25°C
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.