To avoid unnoticed errors made by researchers who are working in the area of nanostructured materials for water splitting, the correct and precise use of evaluation parameters is discussed in detail, stating their acceptability and validity.
Cetylpyridinium chloride(CPC)-stabilized gold organosol in toluene has been prepared by using a two-phase (water-toluene) extraction of AuCl 4followed by its reduction with sodium borohydride in the presence of the surfactant, CPC. The surfactant-stabilized gold nanoparticles were exploited to examine their optical properties when exposed to various solvent systems and ligands by measuring the changes in the localized surface plasmon resonance (LSPR) spectrum. It was seen that the position of the surface plasmon band of metal nanoparticles is greatly influenced by the solvents and the ligands under consideration. The surface plasmon absorption maxima modulates/varies between 520 and 550 nm for gold nanoparticles, depending on the refractive index of the solvent. The significant discovery presented here is that λ max of the LSPR shifts to the blue by 3 nm for the increase of one carbon atom in the alcohol chain. Cationic and anionic surfactants of different chain lengths induce changes in the optical properties of gold nanoparticles, whereas zwitterionic amino acid molecules do not incite remarkable changes in the LSPR spectrum. The λ max of the LSPR gradually shifts to the red with the increase in chain length for both the cationic and anionic surfactants indicating specific binding of the surfactant molecules around the gold particles. Binding of three model compounds (1-dodecylamine, 1-dodecanol, and 1-dodecanethiol) indicates their relative affinity toward the gold surface that corroborate the HSAB (Hard-Soft Acid-Base) principle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.