Phytol (PYT) is a diterpene member of the long-chain unsaturated acyclic alcohols. PYT and some of its derivatives, including phytanic acid (PA), exert a wide range of biological effects. PYT is a valuable essential oil (EO) used as a fragrance and a potential candidate for a broad range of applications in the pharmaceutical and biotechnological industry. There is ample evidence that PA may play a crucial role in the development of pathophysiological states. Focusing on PYT and some of its most relevant derivatives, here we present a systematic review of reported biological activities, along with their underlying mechanism of action. Recent investigations with PYT demonstrated anxiolytic, metabolism-modulating, cytotoxic, antioxidant, autophagy- and apoptosis-inducing, antinociceptive, anti-inflammatory, immune-modulating, and antimicrobial effects. PPARs- and NF-κB-mediated activities are also discussed as mechanisms responsible for some of the bioactivities of PYT. The overall goal of this review is to discuss recent findings pertaining to PYT biological activities and its possible applications.
Chiral salen−metal complexes are among the most versatile asymmetric catalysts and have found utility in fields ranging from materials chemistry to organic synthesis. These complexes are capable of inducing chirality in products formed from a wide variety of chemical processes, often with close to perfect stereoinduction. Salen ligands are tunable for steric as well as electronic properties, and their ability to coordinate a large number of metals gives the derived chiral salen−metal complex very broad utility in asymmetric catalysis. This review primarily summarizes developments in chiral salen−metal catalysis over the last two decades with particular emphasis on those applications of importance in asymmetric synthesis. CONTENTS 1. Introduction and Background 9382 2. Chiral Salen Ligands: Synthesis and Metalation 9382 3. Stereostructural Properties of Chiral Salen−Metal Complexes 9383 4.
Myeloid cell leukemia-1 (Mcl-1) is a member of the Bcl-2 family of proteins responsible for the regulation of programmed cell death (PCD). Amplification of Mcl-1 is a common genetic aberration in human cancer whose overexpression contributes to the evasion of apoptosis and is one of the major resistance mechanisms for many chemotherapies. Mcl-1 mediates its effects primarily through interactions with pro-apoptotic BH3 containing proteins that achieve high affinity for the target by utilizing four hydrophobic pockets in its binding groove. Here we describe the discovery of Mcl-1 inhibitors using fragment based methods and structure-based design. These novel inhibitors exhibit low nanomolar binding affinities to Mcl-1 and greater than 500-fold selectivity over Bcl-xL. X-ray structures of lead Mcl-1 inhibitors when complexed to Mcl-1 provided detailed information on how these small-molecules bind to the target, and were used extensively to guide compound optimization.
Beta (β)-caryophyllene (BCAR) is a major sesquiterpene of various plant essential oils reported for several important pharmacological activities, including antioxidant, anti-inflammatory, anticancer, cardioprotective, hepatoprotective, gastroprotective, nephroprotective, antimicrobial, and immune-modulatory activity. Recent studies suggest that it also possesses neuroprotective effect. This study reviews published reports pertaining to the neuropharmacological activities of BCAR. Databases such as PubMed, Scopus, MedLine Plus, and Google Scholar with keywords "beta (β)-caryophyllene" and other neurological keywords were searched. Data were extracted by referring to articles with information about the dose or concentration/route of administration, test system, results and discussion, and proposed mechanism of action. A total of 545 research articles were recorded, and 41 experimental studies were included in this review, after application of exclusion criterion. Search results suggest that BCAR exhibits a protective role in a number of nervous system-related disorders including pain, anxiety, spasm, convulsion, depression, alcoholism, and Alzheimer's disease.Additionally, BCAR has local anesthetic-like activity, which could protect the nervous system from oxidative stress and inflammation and can act as an immunomodulatory agent. Most neurological activities of this natural product have been linked with the cannabinoid receptors (CBRs), especially the CB2R. This review suggests a possible application of BCAR as a neuroprotective agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.