More than two third area of our planet is covered by oceans and assessment of marine biodiversity is a challenging task. With the increasing global population, there is a tendency to exploit marine resources for food, energy and other requirements. This puts pressure on the fragile marine environment and necessitates sustainable conservation efforts. Marine species identification using traditional taxonomical methods is often burdened with taxonomic controversies. Here we discuss the comparatively new concept of DNA barcoding and its significance in marine perspective. This molecular technique can be useful in the assessment of cryptic species which is widespread in marine environment and linking the different life cycle stages to the adult which is difficult to accomplish in the marine ecosystem. Other advantages of DNA barcoding include authentication and safety assessment of seafood, wildlife forensics, conservation genetics and detection of invasive alien species (IAS). Global DNA barcoding efforts in the marine habitat include MarBOL, CeDAMar, CMarZ, SHARK-BOL, etc. An overview on DNA barcoding of different marine groups ranging from the microbes to mammals is revealed. In conjugation with newer and faster techniques like high-throughput sequencing, DNA barcoding can serve as an effective modern tool in marine biodiversity assessment and conservation.
Ascidians, especially those belonging to the suborder Phlebobranchia, can accumulate high levels of vanadium. Vanadium-binding proteins (vanabins) were first isolated from a vanadium-accumulating ascidian, Ascidia sydneiensis samea, and then the vanabins were cloned, their expression was studied, and metal-binding assays were conducted. In order to unravel the mechanism of vanadium accumulation, we searched for vanabin-like genes in other animals, including other ascidians. A database search revealed five groups of cDNAs that encoded vanabin-like proteins in another ascidian, Ciona intestinalis. The genes encoding C. intestinalis vanabins, CiVanabin1 to CiVanabin5, were clustered in an 8.4-kb genomic region. The direction of transcription of each gene was identical and each gene had a single intron. All the C. intestinalis vanabins were cysteine-rich, and the repetitive pattern of cysteines closely resembled that of A. sydneiensis samea vanabins. Using immobilized metal ion affinity chromatography (IMAC), we found that a recombinant protein of at least one of the C. intestinalis vanabins (CiVanabin5) bound to vanadium(IV) ions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.