A novel duplex PCR method that can amplify the 235-and 136-bp rpoB DNAs of Mycobacterium tuberculosis complex and nontuberculous mycobacteria (NTM), respectively, with two different sets of primers was used to differentially identify 44 reference strains and 379 clinical isolates of mycobacteria in a single-step assay. Showing 100% sensitivity and specificity, the duplex PCR method could clearly differentiate M. tuberculosis complex and NTM strains. In addition, restriction fragment length polymorphism analysis and direct sequencing of the amplicon of NTM could be used to supplement species identification.With the recent global resurgence of mycobacterial infections, especially of tuberculosis, attributed to increased human immunodeficiency virus infection, there is an increasing demand for rapid, sensitive, and specific diagnostic methods for the detection and identification of Mycobacterium tuberculosis and nontuberculous mycobacteria (NTM) in a clinical setting (2,3,4). NTM infection can cause clinical problems, as its pathogenic potential and susceptibilities to antituberculosis treatments vary (22). In addition, mixed infections of M. tuberculosis and NTM have been reported (16). Therefore, it has become important to be able to differentiate between the two during the early stage of the diagnostic procedure.The diagnosis of mycobacterial infection is accomplished by culture-based identification. Primary culture of slowly growing mycobacteria, without using the BACTEC culture system, usually takes 4 to 6 weeks or longer (10). However, recent methodological advances in molecular biology have provided alternative rapid approaches, e.g., the PCR and PCR-linked methods. For the rapid detection or identification of M. tuberculosis, target genes specific to mycobacteria are used in a PCR (7,8,17,19).Because the incidence of NTM infection is increasing, any methods capable of simultaneously determining the presence of M. tuberculosis and/or NTM would be useful. For this purpose, multiplex PCR, which simultaneously uses two or three different genes, has been frequently used, as the technique can specifically detect and identify different species of the genus Mycobacterium (6, 15, 18) and differentiate members of the M. tuberculosis complex (6, 9) in the routine diagnostic laboratory by using Mycobacterium genus-and species-specific genes.However, some of these genes have been found to lack specificity for M. tuberculosis. In addition, IS6110 PCR has been reported to produce false-negative (23) and false-positive (11) results, and the mtp40 gene is not present in all M. tuberculosis strains (21). These reports suggest that the multiplex PCR targeting of these genes has associated problems.In the present study, we used a simplified multiplex PCR assay, basically a duplex PCR (DPCR) assay, to differentiate M. tuberculosis complex and NTM by using a single gene, the RNA polymerase -subunit-encoding gene (rpoB). To demonstrate the efficiency and usefulness of the DPCR assay in this context, we used it to identify refere...