Rice blast disease is caused by the ascomycete fungus Pyricularia oryzae and is one of the most destructive rice diseases in the world. The objectives of this study were investigating various fungal morphological characteristics and performing a phylogenetic analysis. Inter-simple sequence repeat (ISSR) and sequence-related amplified polymorphism (SRAP) markers were used to examine the genetic variation of 59 rice blast fungus strains, including 57 strains collected from different fields in Thailand and two reference strains, 70-15 and Guy11. All isolates used in this study were determined to be P. oryzae by internal transcribed spacer (ITS) sequence confirmation. A total of 14 ISSR primers and 17 pairs of SRAP primers, which produced clear and polymorphic bands, were selected for assessing genetic diversity. A total of 123 polymorphic bands were generated. The similarity index value for the strains ranged from 0.25 to 0.95. The results showed that the blast fungus population in Thailand has both morphological and genetic variations. A high level of genetic variation, or genome adaptation, is one of the fungal mechanisms that could overcome host resistance to avoid host recognition. Results from this research study could bring substantial benefits and ultimately help to understand the blast fungal pathogen genome and the population structure in Thai blast fungus.regions with primers targeting open reading frames (ORFs) [5]. The molecular markers differ in cost, speed, complication, labor, degree of polymorphism, and repeatability. ISSR and SRAP marker techniques are fast and low cost, they do not require sequence information, have high repeatability, and use only one-step PCR. They provide highly discriminating information with good reproducibility and are relatively abundant, while AFLP and RAPD are more labor intensive and time consuming [4,6]. We characterized blast fungal morphology, performed DNA sequence analyses of the internal transcribed spacer (ITS), and used 20 ISSR and 30 SRAP markers to assess the genetic diversity of 59 rice blast strains, including 57 strains collected from Thai rice-growing areas and two reference strains, 70-15 and Guy11. The information obtained from this study will help to understand the population structure and evolution of rice blast fungus in Thailand. Materials and Methods Rice Blast MaterialsA total of 59 rice blast strains were used, including 57 strains collected from Thai rice-growing areas representing central, northern, and north-eastern parts of Thailand. Two rice blast strains, 70-15 and Guy11, were used as reference strains (Table 1). The stock of each blast strain as in filter paper was cultured and DNA was extracted using the cetyl-trimethyl-ammonium-bromide (CTAB) method described by Longya et al. [7].
Abstract. Chaiyasan P, Mingkwan B, Jantarat S, Suwannapoom C, Cioffi MDB, Liehr T, Talumphai S, Tanomtong A, Supiwong W. 2021. Classical and molecular cytogenetics of Belontia hasselti (Perciformes: Osphronemidae): Insights into the ZZ/ZW sex chromosome system. Biodiversitas 22: 546-554. Karyotype of Java combtail fish, Belontia hasselti, from To Daeng peat swamp forest, Narathiwat Province, southern Thailand, was studied for the first time. Mitotic chromosome preparations were prepared directly from kidney cells from ten male and ten female fish. Conventional staining, NOR banding, and molecular cytogenetics with fluorescence in situ hybridization (FISH) using 5S and 18S rDNAs, as well as microsatellites d(CA)15 and d(CAC)10 as probes were applied. The diploid chromosome number (2n) was 48 and a female heterogametic sex chromosome system (ZZ/ZW) is suggested. The fundamental numbers (NF) were 48 and 49 in males and females, respectively. The karyotype of males comprised 48 telocentric chromosomes while the female ones were composed of one metacentric and 47 telocentric chromosomes. A single Ag-NOR-bearing chromosomal pair was identified. The NOR positions were characterized at the interstitial sub-centromeric region of pair 13, which coincided with signals of 18S rDNA and d(CAC)10 probes. The 5S rDNA signals were located at interstitial sites of the largest telocentric pair. Microsatellite d(CA)15 repeats were highly distributed throughout almost all entire chromosomes except for centromeric regions on some chromosome pairs, including sex chromosomes. The present study is a novel report for a ZZ/ZW sex chromosome system of this fish family in Thailand.
Karyotypes of four catfishes of the genus Mystus Scopoli, 1777 (family Bagridae), M. atrifasciatus Fowler, 1937, M. mysticetus Roberts, 1992, M. singaringan (Bleeker, 1846) and M. wolffii (Bleeker, 1851), were analysed by conventional and Ag-NOR banding as well as fluorescence in situ hybridization (FISH) techniques. Microsatellite d(GC)15, d(CAA)10, d(CAT)10 and d(GAA)10 repeat probes were applied in FISH. The obtained data revealed that the four studied species have different chromosome complements. The diploid chromosome numbers (2n) and the fundamental numbers (NF) range between 52 and 102, 54 and 104, 56 and 98, or 58 and 108 in M. mysticetus, M. atrifasciatus, M. singaringan or M. wolffii, respectively. Karyotype formulae of M. mysticetus, M. atrifasciatus, M. singaringan and M. wolffii are 24m+26sm+4a, 26m+24sm+2a, 24m+18sm+14a and 30m+22sm+6a, respectively. A single pair of NORs was identified adjacent to the telomeres of the short arm of chromosome pairs 3 (metacentric) in M. atrifasciatus, 20 (submetacentric) in M. mysticetus, 15 (submetacentric) in M. singaringan, and 5 (metacentric) in M. wolffii. The d(GC)15, d(CAA)10, d(CAT)10 and d(GAA)10 repeats were abundantly distributed in species-specific patterns. Overall, we present a comparison of cytogenetic and molecular cytogenetic patterns of four species from genus Mystus providing insights into their karyotype diversity in the genus.
Karyotypes of four catfishes of the genus Mystus Scopoli, 1777 (family Bagridae), M. atrifasciatus Fowler, 1937, M. mysticetus Roberts, 1992, M. singaringan (Bleeker, 1846) and M. wolffii (Bleeker, 1851), were analysed by conventional and Ag-NOR banding as well as fluorescence in situ hybridization (FISH) techniques. Microsatellite d(GC)15, d(CAA)10, d(CAT)10 and d(GAA)10 repeat probes were applied in FISH. The obtained data revealed that the four studied species have different chromosome complements. The diploid chromosome numbers (2n) and the fundamental numbers (NF) range between 52 and 102, 54 and 104, 56 and 98, or 58 and 108 in M. mysticetus, M. atrifasciatus, M. singaringan or M. wolffii, respectively. Karyotype formulae of M. mysticetus, M. atrifasciatus, M. singaringan and M. wolffii are 24m+26sm+4a, 26m+24sm+2a, 24m+18sm+14a and 30m+22sm+6a, respectively. A single pair of NORs was identified adjacent to the telomeres of the short arm of chromosome pairs 3 (metacentric) in M. atrifasciatus, 20 (submetacentric) in M. mysticetus, 15 (submetacentric) in M. singaringan, and 5 (metacentric) in M. wolffii. The d(GC)15, d(CAA)10, d(CAT)10 and d(GAA)10 repeats were abundantly distributed in species-specific patterns. Overall, we present a comparison of cytogenetic and molecular cytogenetic patterns of four species from genus Mystus providing insights into their karyotype diversity in the genus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.