Kai-Xin-San (KXS) is a traditional Chinese medicinal formula composed of Ginseng Radix et Rhizoma, Polygalae Radix, Acori Tatarinowii Rhizoma, and Poria for relieving major depressive disorder and Alzheimer’s disease in traditional Chinese medicine (TCM) clinics. Previous studies on the antidepressant mechanism of KXS mainly focused on neurotransmitter and neurotrophic factor regulation, but few reports exist on neuronal inflammation regulation. In the current study, we found that KXS exerted antidepressant effects in chronic unpredictable mild stress-induced depression-like mice according to the results of behavioral tests. Meanwhile, KXS also inhibited the activation of microglia and significantly reduced the expression of pro-inflammatory cytokines such as IL-1β, IL−2, and TNF-α in the hippocampus of mice. In mice BV2 microglia cell lines, KXS extract reduced the expression of inflammatory factors in BV2 cells induced by lipopolysaccharide via inhibiting TLR4/IKK/NF-κB pathways, which was also validated by the treatment of signaling pathway inhibitors such as TAK-242 and JSH-23. T0hese data implied that the regulation of pro-inflammatory cytokines in microglia might account for the antidepressant effect of KXS, thereby providing more scientific information for the development of KXS as an alternative therapy for major depressive disorder.
Dendrobium officinale flos (DOF) is the flower of Dendrobium officinale Kimura et Migo, which is usually regarded as a by-product of Dendrobii Offcinalis Caulis. Based on its use as an alternative medicine, we evaluated the antidepressant-like effect of DOF extracts on chronic, unpredictable, mild stress-induced, depression-like behaviour in mice and tested the effects of DOF on the regulation of neurotrophic factors in mouse astrocyte primary cultures and PC12 cell lines. Oral treatment with DOF ethanol extract (DOF-E) could alleviate depression-like behaviours in stress-exposed mice, as evidenced by increased sucrose consumption and decreased immobile time in a forced swim test. In the hippocampus, DOF extracts increased the expression of NGF and BDNF, both at the transcriptional and protein levels. In astrocytes, DOF-E increased the expression of NGF and BDNF via a cAMP-dependent mechanism and regulated plasminogen and matrix metallopeptidase 9 (MMP-9), which are related to the metabolic regulation of neurotrophic factors. In PC12 cells, DOF-E induced the expression of neurofilaments and potentiated the induction of neurite outgrowth upon treatment with a low dose of NGF. Based on these findings, DOF might be used as a supplement for antidepressant therapy in patients with depression.
Elaphuri Davidiani Cornu (EDC) is the natural shedding horn of Elaphurus davidiauus Millne-Edwards that was used by people in ancient China for maintaining physical and mental health. We evaluated the antidepressant effect of EDC using depression-like animal models and explored possible mechanisms in mouse primary astrocyte cultures. We found that aqueous extracts of EDC significantly improved depression-like behavior in a mouse model of depression. The extracts enhanced expression of nerve growth factor and brain-derived neurotrophic factor neurotrophic factors in mouse prefrontal cortex and hippocampus tissues. In the mouse primary astrocyte cultures, the EDC aqueous extracts significantly increased the neurotrophic factor expression both at the transcriptional and protein levels. EDC extracts might exhibit these functions by regulating matrix metalloprotein-9 of the nerve growth factor and brain-derived neurotrophic factor metabolic pathways and might enhance expression of neurotrophic factors via the cAMP- and ERK-dependent pathways. We confirmed this possibility by showing the effects of related inhibitors, providing scientific evidence that supports the utility of EDC in the development of drugs to treat major depressive disorders.
Succinum is an organic mineral formed from the resin of ancient coniferous and leguminous plants, which is applied for tranquilizing mood, promoting blood circulation, and removing blood stasis in Chinese medicine. For quite a long time, the modern research of succinum mainly focuses on the study of physical and chemical properties and authenticity identification while few reports on its medicinal mechanism. In current study, we evaluated different solvent extracts of succinum on carotid artery ligation rats mimicking vascular dementia. It was found that ethyl acetate extracts of succinum significantly improved the learning and memory abilities of model rats and inhibited neuronal apoptosis in the hippocampus. On a mice hippocampal neuronal cell line (HT22), ethyl acetate extracts of succinum also exerted better action trend in inhibiting cell apoptosis induced by oxygen glucose deprivation (OGD). By using XAV-939 on both in vivo and in vitro studies, it was found that ethyl acetate extracts of succinum might exert these functions by regulating the GSK3β/β-catenin pathway. These studies revealed the neuronal function of succinum, which explained the traditional effects of succinum and provided more modern scientific basis for its clinical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.