Actor frameworks and similar reactive programming techniques are widely used for building concurrent systems. They promise to be efficient and scale well to a large number of cores or nodes in a distributed system. However, they also expose programmers to nondeterminism, which often makes implementations hard to understand, debug, and test. The recently proposed reactor model is a promising alternative that enables efficient deterministic concurrency. In this paper, we show that determinacy does neither imply a loss in expressivity nor in performance. To show this, we evaluate Lingua Franca (LF), a reactor-oriented coordination language that equips mainstream programming languages with a concurrency model that automatically takes advantage of opportunities to exploit parallelism that do not introduce nondeterminism. Our implementation of the Savina benchmark suite demonstrates that, in terms of execution time, the runtime performance of LF programs even exceeds popular and highly optimized actor frameworks. We compare against Akka and CAF, which LF outperforms by 1.86𝑥 and 1.42𝑥, respectively.CCS Concepts: • Computing methodologies → Concurrent programming languages; • Software and its engineering → Runtime environments; Source code generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.