Rosetting is a virulent Plasmodium falciparum phenomenon associated with severe malaria. Here we demonstrate that P. falciparum-encoded repetitive interspersed families of polypeptides (RIFINs) are expressed on the surface of infected red blood cells (iRBCs), where they bind to RBCs--preferentially of blood group A--to form large rosettes and mediate microvascular binding of iRBCs. We suggest that RIFINs have a fundamental role in the development of severe malaria and thereby contribute to the varying global distribution of ABO blood groups in the human population.
Proliferation and differentiation inside erythrocytes are important steps in the life cycle of Plasmodium spp. To achieve these, the parasites export polypeptides to the surface of infected erythrocytes; for example, to import nutrients and to bind to other erythrocytes and the host microvasculature. Binding is mediated by the adhesive polypeptides Plasmodium falciparum-encoded repetitive interspersed families of polypeptides (RIFINs), subtelomeric variant open reading frame (STEVOR) and P. falciparum erythrocyte membrane protein 1 (PfEMP1), which are encoded by multigene families to ensure antigenic variation and evasion of host immunity. These variant surface antigens are suggested to mediate the sequestration of infected erythrocytes in the microvasculature and block the blood flow when binding is excessive. In this Review, we discuss the multigene families of surface variant polypeptides and highlight their roles in causing severe malaria.
COVID-19 has become one of the biggest health concern, along with huge economic burden. With no clear remedies to treat the disease, doctors are repurposing drugs like chloroquine and remdesivir to treat COVID-19 patients. In parallel, research institutes in collaboration with biotech companies have identified strategies to use viral proteins as vaccine candidates for COVID-19. Although this looks promising, they still need to pass the test of challenge studies in animal models. As various models for SARS-CoV-2 are under testing phase, biotech companies have bypassed animal studies and moved to Phase I clinical trials. In view of the present outbreak, this looks a justified approach, but the problem is that in the absence of animal studies, we can never predict the outcomes in humans. Since animal models are critical for vaccine development and SARS-CoV-2 has different transmission dynamics, in this review we compare different animal models of SARS-CoV-2 with humans for their pathogenic, immune response and transmission dynamics that make them ideal models for vaccine testing for COVID-19. Another issue of using animal model is the ethics of using animals for research; thus, we also discuss the pros and cons of using animals for vaccine development studies.
Variegated surface antigen expression is key to chronic infection and pathogenesis of the human malaria parasite Plasmodium falciparum. This protozoan parasite expresses distinct surface molecules that are encoded by clonally variant gene families such as var, rif and stevor. The molecular mechanisms governing activation of individual members remain ill-defined. To investigate the molecular events of the initial transcriptional activation process we focused on a member of the apicomplexan ApiAP2 transcription factor family predicted to bind to the 5′ upstream regions of the var gene family, AP2-exp (PF3D7_1466400). Viable AP2-exp mutant parasites rely on expressing no less than a short truncated protein including the N-terminal AP2 DNA-binding domain. RNA-seq analysis in mutant parasites revealed transcriptional changes in a subset of exported proteins encoded by clonally variant gene families. Upregulation of RIFINs and STEVORs was validated at the protein levels. In addition, morphological alterations were observed on the surface of the host cells infected by the mutants. This work points to a complex regulatory network of clonally variant gene families in which transcription of a subset of members is regulated by the same transcription factor. In addition, we highlight the importance of the non-DNA binding AP2 domain in functional gene regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.