Protein-Protein Interaction Sitesbase (PPInS), a high-performance database of protein-protein interacting interfaces, is presented. The atomic level information of the molecular interaction happening amongst various protein chains in protein-protein complexes (as reported in the Protein Data Bank [PDB]) together with their evolutionary information in Structural Classification of Proteins (SCOPe release 2.06), is made available in PPInS. Total 32468 PDB files representing X-ray crystallized multimeric protein-protein complexes with structural resolution better than 2.5 Å had been shortlisted to demarcate the protein-protein interaction interfaces (PPIIs). A total of 111857 PPIIs with ~32.24 million atomic contact pairs (ACPs) were generated and made available on a web server for on-site analysis and downloading purpose. All these PPIIs and protein-protein interacting patches (PPIPs) involved in them, were also analyzed in terms of a number of residues contributing in patch formation, their hydrophobic nature, amount of surface area they contributed in binding, and their homo and heterodimeric nature, to describe the diversity of information covered in PPInS. It was observed that 42.37% of total PPIPs were made up of 6–20 interacting residues, 53.08% PPIPs had interface area ≤1000 Å2 in PPII formation, 82.64% PPIPs were reported with hydrophobicity score of ≤10, and 73.26% PPIPs were homologous to each other with the sequence similarity score ranging from 75–100%. A subset “Non-Redundant Database (NRDB)” of the PPInS containing 2265 PPIIs, with over 1.8 million ACPs corresponding to the 1931 protein-protein complexes (PDBs), was also designed by removing structural redundancies at the level of SCOP superfamily (SCOP release 1.75). The web interface of the PPInS (http://www.cup.edu.in:99/ppins/home.php) offers an easy-to-navigate, intuitive and user-friendly environment, and can be accessed by providing PDB ID, SCOP superfamily ID, and protein sequence.
Graph Isomorphism has been reduced to quasi-polynomial time complexity by Laszlo Babai. However, his solution is not extendable to extremely symmetric Johnson graphs. A method to reduce the runtime complexity of Graph Isomorphism to polynomial space would have wide ranging effects. We have identified and implemented a way to solve Graph Isomorphism for Johnson, Generalised Johnson and Strongly Regular graphs. The method is based on structural organisation in terms of participation of vertices of a graph in formation of cyclical shapes of specific order. The method successfully identifies isomorphs among Johnson, Generalised Johnson and Strongly Regular graphs with polynomial time complexity. Such methods will eventually significant advancements in the field of cryptography, automata theory, compilers, image processing etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.