water, confined by atomically flat layered materials, may transit into various crystalline phases even at room temperature. However, to gain full control over the crystalline state, we should not only confine water in the out-of-plane direction but also restrict its in-plane motion, forming 2D water clusters or ribbons. One way to do this is by using an electric field, in particular the intrinsic electric field of an adjacent polar material. We have found that the crystalline phases of 2D water clusters placed between two hexagonal boron nitride (h-BN) nanoribbons are crucially determined by the nanoribbons' edges, the resulting polarity of the nanoribbons, and their interlayer distance. We make use of the density functional theory with further assistance of molecular dynamics simulations to establish the comprehensive phase diagrams, demonstrating transitions between liquid and solid phases and between the states of different crystalline orders. We also show that the crystalline orders are maintained when water flows between h-BN channels under external pressure. Our results open a promising pathway toward the control of the water structure and its flow by the use of the microscopic electric field of polar materials.
We describe an approach based on non-equilibrium molecular dynamics (NEMD) simulations to calculate the ionic mobility of solid ion conductors such as solid electrolytes from first-principles. The calculations are carried out in finite slabs of the material, where an electric field is applied and the dynamic response of the mobile ions is measured. We compare our results with those obtained from diffusion calculations, under the non-interacting ion approximation, and with experiment. This method is shown to provide good quantitative estimates for the ionic mobilities of two silver conductors, $$\alpha$$ α -AgI and $$\alpha$$ α -RbAg$$_4$$ 4 I$$_5$$ 5 . In addition to being convenient and numerically robust, this method accounts for ion-ion correlations at a much lower computational cost than exact approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.