The replication process of human immunodeficiency virus requires a number of nucleic acid annealing steps facilitated by the hybridization and helix-destabilizing activities of human immunodeficiency virus nucleocapsid (NC) protein. NC contains two CCHC zinc finger motifs numbered 1 and 2 from the N terminus. The amino acids surrounding the CCHC residues differ between the two zinc fingers. Assays were preformed to investigate the activities of the fingers by determining the effect of mutant and wild-type proteins on annealing of 42-nucleotide RNA and DNA complements. The mutants 1.1 NC and 2.2 NC had duplications of the N-and C-terminal zinc fingers in positions 1 and 2. The mutant 2.1 NC had the native zinc fingers with their positions switched. Annealing assays were completed with unstructured and highly structured oligonucleotide complements. 2.2 NC had a near wild-type level of annealing of unstructured nucleic acids, whereas it was completely unable to stimulate annealing of highly structured nucleic acids. In contrast, 1.1 NC was able to stimulate annealing of both unstructured and structured substrates, but to a lesser degree than the wild-type protein. Results suggest that finger 1 has a greater role in unfolding of strong secondary structures, whereas finger 2 serves an accessory role that leads to a further increase in the rate of annealing.
The HIV-1 capsid protein consists of two independently folded domains connected by a flexible peptide linker (residues 146–150), the function of which remains to be defined. To investigate the role of this region in virus replication, we made alanine or leucine substitutions in each linker residue and two flanking residues. Three classes of mutants were identified: (i) S146A and T148A behave like wild type (WT); (ii) Y145A, I150A, and L151A are noninfectious, assemble unstable cores with aberrant morphology, and synthesize almost no viral DNA; and (iii) P147L and S149A display a poorly infectious, attenuated phenotype. Infectivity of P147L and S149A is rescued specifically by pseudotyping with vesicular stomatitis virus envelope glycoprotein. Moreover, despite having unstable cores, these mutants assemble WT-like structures and synthesize viral DNA, although less efficiently than WT. Collectively, these findings demonstrate that the linker region is essential for proper assembly and stability of cores and efficient replication.
An in vitro strand transfer assay that mimicked recombinational events occurring during reverse transcription in HIV-1 was used to assess the role of nucleocapsid protein (NC) in strand transfer. Strand transfer in highly structured nucleic acid species from the U3 3 long terminal repeats, gag-pol frameshift region, and Rev response element were strongly enhanced by NC. In contrast, weakly structured templates from the env and pol-vif regions transferred well without NC and showed lower enhancement. The lack of strong polymerase pause sites in the latter regions demonstrated that nonpause driven mechanisms could also promote transfer. Assays conducted using NC zinc finger mutants supported a differential role for the two fingers in strand transfer with finger 1 (N-terminal) being more important on highly structured RNAs. Overall this report suggests a role for structural intricacies of RNA templates in determining the extent of influence of NC on recombination and illustrates that strand transfer may occur by several different mechanisms depending on the structural nature of the RNA.
Retroviral recombinants are generated by strand transfers occurring within internal regions of the viral genome and are a major source of genetic variability. Strand transfer has been linked to "pausing" occurring at secondary structures during synthesis by reverse transcriptase. Yet, weakly structured templates lacking strong pause sites also undergo efficient transfer. In this report, transfer crossover sites on high and low structured templates from the gag-pol frameshift region (GagPol) and the env (Env) regions, respectively, were determined by using a reconstituted in vitro strand transfer assay. The assay tested transfers occurring between a donor and acceptor template over a 150-nucleotide homologous region. The majority of crossovers were in a small 23-nucleotide region near a major pause site on GagPol, clearly indicating a pause-driven mechanism. In contrast, on Env, transfers were more dispersed clustering toward the end of the homologous region. Slowing down polymerization on Env by decreasing the dNTP concentration resulted in crossovers shifting toward the beginning of the homologous region. Removal of a small 38-nucleotide region at the 3-end of the Env acceptor had a large effect on the level of strand transfer despite very few crossovers mapping to this region. This implicated this part of the acceptor in transfers occurring at downstream positions. For Env the results support a mechanism where the acceptor rapidly binds nascent DNA, then "zippers" downstream catching up with the donor-DNA hybrid and displacing the donor. Such a mechanism may be important to recombination in low structure regions of the HIV genome.During reverse transcription, the human immunodeficiency virus (HIV) 1 undergoes extensive recombination. Jetzt and coworkers (1, 2) have shown that on average, HIV-1 recombines approximately two to three times in every cycle of replication. More recently results suggesting ϳ10 recombinations per infectious cycle in T cell lines and as many as 30 per cycle in macrophages have been reported (3, 4). By generating genetic diversity in the viral population recombination can allow some viruses to evade the host immune response and drug therapy (5-8). In addition the process is important in generating recombinants between different viral subtypes (intersubtype recombinants) (9 -13). These can potentially lead to new stable circulating viruses (circulating recombinant forms (CRFs)) that can further complicate vaccine and drug approaches (9).Most retroviral recombination occurs during synthesis of minus strand DNA using genomic RNA as template by a process called strand transfer (also referred to as strand jumping or template switching) (7,14,15). Strand transfer involves the switching of DNA being synthesized on one template (referred to as "donor") to homologous regions on the same or on a second template (referred to as "acceptor") where the synthesis continues. The resultant proviral DNA is capable of encoding a genomic RNA that is a chimera of the original parent templates. The first and...
One of the challenges in developing cell lines for high-throughput screening in drug discovery is the labor-and timeintensive process required to create stable clonal cell lines that express specific reporters or drug targets. The authors report here the generation of a site-specific retargeting platform in 3 different cell lines: adherent HEK293, suspension CHO-S, and a human embryonic cell line (BGO1V). These platform cell lines were generated by using a combination of 2 site-specific integrases to develop a system that allows one to efficiently target a gene of interest to a specific locus and generates rapid production of homogeneous cell pools that stably express the gene of interest. The phiC31 integrase was used to create a platform line by placing a target site for the R4 integrase into a pseudo attP site, and then the R4 integrase was used to place a gene of interest into specific R4 target site. The authors demonstrate the successful and rapid retargeting of a G-proteincoupled receptor (cholecystokinin receptor A, CCKAR), an ion channel (the transient receptor potential cation channel, subfamily M, member 8, TRPM8), and a GFP-c-Jun(1-79) fusion protein into the specific loci in these cell lines and show that these retargeted cell lines exhibit functional and pharmacological responses consistent with those reported in the literature. (Journal of Biomolecular
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.