The recent development of various wireless technologies in the 2.4GHz ISM band has led to the co-channel coexistence of heterogeneous wireless devices, such as Wi-Fi, Bluetooth, and ZigBee. This sharing of the common channel results in the challenging problem of cross-technology interference, since the wireless devices generally use diverse PHY/MAC specifications. In particular, the less capable ZigBee device may often experience unpredictably low throughput due to the interference from the powerful Wi-Fi. The ZigBee protector is an attractive solution, since it can reserve the channel on behalf of the weak ZigBee devices. The protector method, however, has a few limitations; (i) it may cause significant overhead to both ZigBee and Wi-Fi, and (ii) the ZigBee control packets are still vulnerable to the Wi-Fi interference. In this paper, we propose a novel time reservation scheme called Narrow Band Protection (NBP), that uses a protector to guard the ongoing ZigBee transmission. The key contributions are threefold: First, NBP autonomously detects any ongoing ZigBee transmissions by cross-correlating the ZigBee's packets with the pre-defined Pseudo-random Noise (PN) sequences. By using this cross-correlation, it significantly reduces the control overhead. Second, due to the reliable cross-correlation, NBP is robust from the control packet collisions, which typically wastes channel time for both ZigBee and Wi-Fi. Third, NBP protects the burst of ZigBee packets by estimating the size of the burst, in turn, giving a semantic to the PN codebook. This is important because ZigBee is typically battery-powered and thus the long burst is advantageous for the low duty cycle operations. We first show the feasibility of NBP by implementing it on the real USRP/GNURadio platform. Then, we evaluate the performance of NBP through mathematical analysis and NS-2 simulations. The results show that NBP enhances the ZigBee throughput by up to 1.77x compared to the existing scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.