Earth-abundant nickel is a typical non-noble-metal cocatalyst used for photocatalytic hydrogen evolution (PHE). Ni nanoparticles, however, tend to aggregate during the hydrogen production process, significantly lowering their PHE activity. To avoid aggregation, we used single atom form Ni and anchored them on vacancies in nitrogen-doped graphene (Ni-NG) as a cocatalyst for PHE. We demonstrated that Ni-NG is a robust and highly active cocatalyst for PHE from water. With only 0.0013 wt % of Ni loading, the PHE activity of composite Ni-NG/CdS photocatalyst improves by 3.4 times compared to that of NG/CdS, and it does not decay even after 10 rounds of 5-hour running. The quantum efficiency of Ni-NG/CdS for PHE reaches 48.2% at 420 nm, one of the highest efficiencies for non-noble-metal-based cocatalysts reported in the literature. Photoluminescence spectral analyses and electrochemical examinations indicated that Ni-NG coupled to CdS serves not only as an electron storage medium to suppress electron–hole recombination but also as an active catalyst for proton reduction reaction. Density functional theory calculations show that the high activity of Ni-NG/CdS composite results from the single Ni atoms trapped in NG vacancies, which significantly reduces the activation energy barrier of the hydrogen evolution reaction. This research may be valuable for developing robust and highly active noble metal free cocatalysts for solar hydrogen production.
Summary Calcium is one of the most abundant and cheapest elements on earth. However, due to the lack of d-orbitals for chemical adsorption, it is generally considered as a stoichiometric reagent with no catalytic activities in heterogeneous catalysis. In this research, we have revealed that atomically confined Ca in nitrogen-doped graphene (Ca 1 -NG) can be an effective heterogeneous catalyst to boost both electrocatalytic and photocatalytic hydrogen evolution reactions (HER). Ca single atoms anchored in NG can efficiently enhance the HER performance due to the improvement of the interfacial charge transfer rate and suppression of the photo-generated charge recombination. Density functional theory calculations show that the high catalytic activity of Ca 1 -NG results from the Ca single atoms in NG, which leads to multiple H adsorption configurations with favorable ΔG H∗ values for HER. This research can be valuable for the designing of environmentally friendly, economical and efficient catalysts for renewable hydrogen production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.