Logistic regression (LR) is a model that associates the relationship between category-type response variables with quantitative or quantitative and qualitative predictor variables. The prediction of the LR model is in the form of probability. This research studied logistic regression (LR) models and Classification Trees in the case of ordinal response variable types. The data used in this research from The Central Statistics Agency (BPS). The research variables used are Human Development Index (HDI), gross enrollment rate for high school, percentage of poor people, open unemployment, and percentage of married age <17 years and some of the related predictor variables in Central Java Province in 2018. The HDI data is categorized into three levels, namely very high, high, and moderate. The results of the ordinal LR model show that there are three factors that influence the HDI, they are the gross enrollment rate for high school (GER), the percentage of the poor, and the proportion of women who married at the age of less than 17 years. Comparison of the accuracy LR model and Classification Tree in classification analysis shows that if the training data used is 60%-70% the LR model is better than Classification Tree, while the training data used is more than 70% and less than 86% then the Classification Tree model is better than LR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.