Testing for the presence of genetically modified material in seed samples is of critical importance for all stakeholders in the agricultural industry, including growers, seed manufacturers, and regulatory bodies. While rapid antibody-based testing for the transgenic protein has fulfilled this need in the past, the introduction of new variants of a given transgene demands new diagnostic regimen that allows distinguishing different traits at the nucleic acid level. Although such molecular tests can be performed by PCR in the laboratory, their requirement for expensive equipment and sophisticated operation have prevented its uptake in point-of-use applications. A recently developed isothermal DNA amplification technique, recombinase polymerase amplification (RPA), combines simple sample preparation and amplification work-flow procedures with the use of minimal detection equipment in real time. Here, we report the development of a highly sensitive and specific RPA-based detection system for Genuity Roundup Ready 2 Yield (RR2Y) material in soybean (Glycine max) seed samples and present the results of studies applying the method in both laboratory and field-type settings.
In order to provide farmers with better and more customized alternatives to improve yields, combining multiple genetically modified (GM) traits into a single product (called stacked trait crops) is becoming prevalent. Trait protein expression levels are used to characterize new GM products and establish exposure limits, two important components of safety assessment. Developing a multiplexed immunoassay capable of measuring all trait proteins in the same sample allows for higher sample throughput and savings in both time and expense. Fluorescent (bead-based) multiplexed immunoassays (FMI) have gained wide acceptance in mammalian research and in clinical applications. In order to facilitate the measurement of stacked GM traits, we have developed and validated an FMI assay that can measure five different proteins (β-glucuronidase, neomycin phosphotransferase II, Cry1Ac, Cry2Ab2, and CP4 5-enolpyruvyl-shikimate-3-phosphate synthase) present in cotton leaf from a stacked trait product. Expression levels of the five proteins determined by FMI in cotton leaf tissues have been evaluated relative to expression levels determined by enzyme-linked immunosorbent assays (ELISAs) of the individual proteins and shown to be comparable. The FMI met characterization requirements similar to those used for ELISA. Therefore, it is reasonable to conclude that FMI results are equivalent to those determined by conventional individual ELISAs to measure GM protein expression levels in stacked trait products but with significantly higher throughput, reduced time, and more efficient use of resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.