We investigate the control of the morphological variables on the 2000–2016 glacier‐wide mass balances of 6,470 individual glaciers of High Mountain Asia. We separate the data set into 12 regions assumed to be climatically homogeneous. We find that the slope of the glacier tongue, mean glacier elevation, percentage of supraglacial debris cover, and avalanche contributing area all together explain a maximum of 48% and a minimum of 8% of the glacier‐wide mass balance variability, within a given region. The best predictors of the glacier‐wide mass balance are the slope of the glacier tongue and the mean glacier elevation for most regions, with the notable exception of the inner Tibetan Plateau. Glacier‐wide mass balances do not differ significantly between debris‐free and debris‐covered glaciers in 7 of the 12 regions analyzed. Lake‐terminating glaciers have more negative mass balances than the regional averages, the influence of lakes being stronger on small glaciers than on large glaciers.
The fate of the Hindu Kush Himalayan glaciers has been a topic of heated debate due to their rapid melting and retreat. The underlying reason for the debate is the lack of systematic large-scale observations of the extent of glaciers in the region owing to the high altitude, remoteness of the terrain, and extreme climatic conditions. Here we present a remote sensing -based comprehensive assessment of the current status and observed changes in the glacier extent of the Hindu Kush Himalayas. It reveals highly heterogeneous, yet undeniable impacts of climate change.
The Hindu Kush-Himalayan region is an important global freshwater resource. The hydrological regime of the region is vulnerable to climatic variations, especially precipitation and temperature. In our study, we modelled the impact of climate change on the water balance and hydrological regime of the snow dominated Kaligandaki Basin. The Soil and Water Assessment Tool (SWAT) was used for a future projection of changes in the hydrological regime of the Kaligandaki basin based on Representative Concentration Pathways Scenarios (RCP 4.5 and RCP 8.5) of ensemble downscaled Coupled Model Intercomparison Project's (CMIP5) General Circulation Model (GCM) outputs. It is predicted to be a rise in the average annual temperature of over 4°C, and an increase in the average annual precipitation of over 26% by the end of the 21st century under RCP 8.5 scenario. Modeling results show these will lead to significant changes in the basin's water balance and hydrological regime. In particular, a 50% increase in discharge is expected at the outlet of the basin. Snowmelt contribution will largely be affected by climate change, and it is projected to increase by 90% by 2090.Water availability in the basin is not likely to decrease during the 21st century. The study demonstrates that the important water balance components of snowmelt, evapotranspiration, and water yield at higher elevations in the upper and middle sub-basins of the Kaligandaki Basin will be most affected by the increasing temperatures and precipitation.
Snow governs interaction between atmospheric and land surface processes in high mountains, and is also source of fresh water. It is thus important to both climate scientists and local communities. However, our understanding of snow cover dynamics in terms of space and time is limited across the Hindu Kush Himalaya (HKH) region, which is known to be a climatically sensitive region. We used MODIS snow cover area (SCA) data (2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012), APHRODITE temperature data (2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007), and monthly long term in-situ river discharge data of the Gandaki (1968Gandaki ( -2010, Koshi (1977Koshi ( -2010 and Manas (1987Manas ( -2004 basins to analyse variations among four basins. We gained insights into short term SCA and temperature, long term discharge trends, and regional variability thereby. Strong correlations were observed among SCA, temperature and discharge thereby highlighting the strong nexus between them. Temporal and spatial snow cover variability across the basins is strongly coupled with the variability of two weather systems: Western Disturbances (WD) and Indian Monsoon System (IMS), and strongly influenced by topography. Manifestation of these variability in terms if downstream discharge can have repercussion to water based sectors: hydropower and agriculture, as low flow seasons is seen affected. This study adds to our knowledge of snow fall and melt dynamics in the HKH region, and intra-annual snow melt contributions to downstream discharges. The study is limited by short span of data and it is desirable to perform a similar study using data representing a much longer time span.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.