Natural Language Understanding and Speech Understanding systems are now a global trend, and with the advancement of artificial intelligence and machine learning techniques, have drawn attention from both the academic and business communities. Domain prediction, intent detection and entity extraction or slot fillings are the most important parts for such intelligent systems. Various traditional machine learning algorithms such as Bayesian algorithm, Support Vector Machine, and Artificial Neural Network, along with recent Deep Neural Network techniques, are used to predict domain, intent, and entity. Most language understanding systems process user input in a sequential order: domain is first predicted, then intent and slots are filled according to the semantic frames of the predicted domain. This pipeline approach, however, has many disadvantages including downstream error; i.e., if the system fails to predict the domain, then the system also fails to predict intent and slot. The main purpose of this paper is to mitigate the risk of downstream error propagation in traditional pipelined models and improve the predictive performance of domain, intent, and slot-all of which are critical steps for speech understanding and dialog systems-with a deep learning-based single joint model trained with an adversarial approach and long shortterm memory (LSTM) algorithm. The systematic experimental analysis shows significant improvements in predictive performance for domain, intent, and entity with the proposed adversarial joint model, compared to the base joint model.
Artificial intelligent based dialog systems are getting attention from both business and academic communities. The key parts for such intelligent chatbot systems are domain classification, intent detection, and named entity recognition. Various supervised, unsupervised, and hybrid approaches are used to detect each field. Such intelligent systems, also called natural language understanding systems analyze user requests in sequential order: domain classification, intent, and entity recognition based on the semantic rules of the classified domain. This sequential approach propagates the downstream error; i.e., if the domain classification model fails to classify the domain, intent and entity recognition fail. Furthermore, training such intelligent system necessitates a large number of user-annotated datasets for each domain. This study proposes a single joint predictive deep neural network framework based on long short-term memory using only a small user-annotated dataset to address these issues. It investigates value added by incorporating unlabeled data from user chatting logs into multi-domain spoken language understanding systems. Systematic experimental analysis of the proposed joint frameworks, along with the semi-supervised multi-domain model, using open-source annotated and unannotated utterances shows robust improvement in the predictive performance of the proposed multi-domain intelligent chatbot over a base joint model and joint model based on adversarial learning.
Due to increasing competition of globalization and fast technological improvements the appropriate method for evaluating and selecting IS-personnel is one of the key factors for an organization's success. Personnel selection is a multi-criteria decision-making (MCDM) problem which consists of both qualitative and quantitative metrics. Although many articles have discussed various knowledge and skills IS personnel should possess, no specific model for IS personnel selection and evaluation, to our knowledge, has been published up to now. After reviewing the IS personnel's important characteristics, we propose an approach for categorizing the IS personnel based on their skills, ability, and knowledge during evaluation and selection process. Our proposed approach is derived from a model of neural network algorithm. We have adapted and implemented the fuzzy ART algorithm with Jaccard choice function. The result of an illustrative numerical example is proposed to demonstrate the easiness and effectiveness of our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.