In this work, we establish a link between the classification of ECM-friendly elliptic curves and Mazur’s program B, which consists in parameterizing all the families of elliptic curves with exceptional Galois image. Motivated by Barbulescu et al. [ANTS X–proceedings of the tenth algorithmic number theory symposium, Berkeley, CA, 2013], we say an elliptic curve is ECM-friendly if it does not have complex multiplication and if its Galois image is exceptional for some level. Building upon two recent works which treated the case of congruence subgroups of prime-power level which occur for infinitely many j j -invariants, we prove that there are exactly 1525 families of rational elliptic curves with distinct Galois images which are cartesian products of subgroups of prime-power level. This makes a complete list of rational families of ECM-friendly elliptic curves with cartesian Galois images, out of which less than 23 were known in the literature. We furthermore refine a heuristic of Montgomery to compare these families and conclude that the best 4 families which can be put in a = − 1 a=-1 twisted Edwards’ form are new.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.