BackgroundBronchopneumonia is a population limiting disease of bighorn sheep (Ovis canadensis). The cause of this disease has been a subject of debate. Leukotoxin expressing Mannheimia haemolytica and Bibersteinia trehalosi produce acute pneumonia after experimental challenge but are infrequently isolated from animals in natural outbreaks. Mycoplasma ovipneumoniae, epidemiologically implicated in naturally occurring outbreaks, has received little experimental evaluation as a primary agent of bighorn sheep pneumonia.Methodology/Principal FindingsIn two experiments, bighorn sheep housed in multiple pens 7.6 to 12 m apart were exposed to M. ovipneumoniae by introduction of a single infected or challenged animal to a single pen. Respiratory disease was monitored by observation of clinical signs and confirmed by necropsy. Bacterial involvement in the pneumonic lungs was evaluated by conventional aerobic bacteriology and by culture-independent methods. In both experiments the challenge strain of M. ovipneumoniae was transmitted to all animals both within and between pens and all infected bighorn sheep developed bronchopneumonia. In six bighorn sheep in which the disease was allowed to run its course, three died with bronchopneumonia 34, 65, and 109 days after M. ovipneumoniae introduction. Diverse bacterial populations, predominantly including multiple obligate anaerobic species, were present in pneumonic lung tissues at necropsy.Conclusions/SignificanceExposure to a single M. ovipneumoniae infected animal resulted in transmission of infection to all bighorn sheep both within the pen and in adjacent pens, and all infected sheep developed bronchopneumonia. The epidemiologic, pathologic and microbiologic findings in these experimental animals resembled those seen in naturally occurring pneumonia outbreaks in free ranging bighorn sheep.
ABSTRACT:Previous studies demonstrated that bighorn sheep (Ovis canadensis) died of pneumonia when commingled with domestic sheep (Ovis aries) but did not conclusively prove that the responsible pathogens were transmitted from domestic to bighorn sheep. The objective of this study was to determine, unambiguously, whether Mannheimia haemolytica can be transmitted from domestic to bighorn sheep when they commingle. Four isolates of M. haemolytica were obtained from the pharynx of two of four domestic sheep and tagged with a plasmid carrying the genes for green fluorescent protein (GFP) and ampicillin resistance (AP R ). Four domestic sheep, colonized with the tagged bacteria, were kept about 10 m apart from four bighorn sheep for 1 mo with no clinical signs of pneumonia observed in the bighorn sheep during that period. The domestic and bighorn sheep were then allowed to have fence-line contact for 2 mo. During that period, three bighorn sheep acquired the tagged bacteria from the domestic sheep. At the end of the 2 mo of fence-line contact, the animals were allowed to commingle. All four bighorn sheep died 2 days to 9 days following commingling. The lungs from all four bighorn sheep showed gross and histopathologic lesions characteristic of M. haemolytica pneumonia. Tagged M. haemolytica were isolated from all four bighorn sheep, as confirmed by growth in ampicillin-containing culture medium, PCR-amplification of genes encoding GFP and Ap R , and immunofluorescent staining of GFP. These results unequivocally demonstrate transmission of M. haemolytica from domestic to bighorn sheep, resulting in pneumonia and death of bighorn sheep.
ABSTRACT:Mannheimia haemolytica consistently causes severe bronchopneumonia and rapid death of bighorn sheep (Ovis canadensis) under experimental conditions. However, Bibersteinia trehalosi and Pasteurella multocida have been isolated from pneumonic bighorn lung tissues more frequently than M. haemolytica by culture-based methods. We hypothesized that assays more sensitive than culture would detect M. haemolytica in pneumonic lung tissues more accurately. Therefore, our first objective was to develop a PCR assay specific for M. haemolytica and use it to determine if this organism was present in the pneumonic lungs of bighorns during the 2009-2010 outbreaks in Montana, Nevada, and Washington, USA. Mannheimia haemolytica was detected by the species-specific PCR assay in 77% of archived pneumonic lung tissues that were negative by culture. Leukotoxin-negative M. haemolytica does not cause fatal pneumonia in bighorns. Therefore, our second objective was to determine if the leukotoxin gene was also present in the lung tissues as a means of determining the leukotoxicity of M. haemolytica that were present in the lungs. The leukotoxin-specific PCR assay detected leukotoxin gene in 91% of lung tissues that were negative for M. haemolytica by culture. Mycoplasma ovipneumoniae, an organism associated with bighorn pneumonia, was detected in 65% of pneumonic bighorn lung tissues by PCR or culture. A PCR assessment of distribution of these pathogens in the nasopharynx of healthy bighorns from populations that did not experience an all-age die-off in the past 20 yr revealed that M. ovipneumoniae was present in 31% of the animals whereas leukotoxin-positive M. haemolytica was present in only 4%. Taken together, these results indicate that culture-based methods are not reliable for detection of M. haemolytica and that leukotoxin-positive M. haemolytica was a predominant etiologic agent of the pneumonia outbreaks of 2009-2010.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.