Green synthesis of silver nanoparticles (NPs) by green route approaches has advantages over conventional methods. In green synthesis, we use eco-friendly plant extracts contain secondary metabolites and bioactive components, proteins that act as both reducing and capping agents, form stable and shape-controlled green silver nanoparticles. The current study deals with the synthesis of silver nanoparticles using the aqueous latex extract of Allamanda cathartica. The green silver nanoparticles are characterized by using different spectroscopic methods like ultra violet-visible spectroscopy (UV-Vis), Fourier transform-infrared spectroscopy (FTIR), transmission electron microscope (TEM), scanning electron microscope (SEM) and X-ray diffraction (XRD). Results indicated that the crystalline natured particles were spherical shaped with an average of 35 nm in size, and that the stability of silver nanoparticles was due to its high negative zeta potential of-27.6 mV. The current study also revealed that green silver nanoparticles had very good genotoxic and cytotoxic activity in peripheral blood mononuclear cells (PBMCs). Leukemia leads to the development of high numbers of white blood cells, which is one of the major types of cancers that affect children. Many of the chemicals used for the treatment produce remarkable side effects. To overcome this problem, we made an attempt to see the efficacy of latex green silver nanoparticle on peripheral blood mononuclear cells and deoxyribonucleic acid fragmentation, which leads to the development of future therapeutic drugs.
One step centrifugation procedure used commonly for separation of blood cells is the ficoll gradient centrifugation. In this method, after centrifugation, the peripheral blood mononuclear cells (PBMCs) are located on the top of the separation fluid, whereas other blood cells erythrocytes and granulocytes sediment to the bottom. In the present study 75% of lymphocyte suspension could be separated by using a one-step density gradient centrifugation of sodium heparin blood with Sucrose. Sucrose was diluted into different concentrations using miliQ water (10%, 20%, 30%, 40%, 50%, 60%,70%, 80%, 90%, 100%,). 4 mL of diluted blood was layered on 4 mL of each sucrose solution and centrifuged for 45 minutes at 1000 rpm. Clear separation of PBMCs could be observed in solution with 40% sucrose. The separated PBMCs were analysed in haeme analyser which showed 75% lymphocytes, 23% monocytes and 2% of other cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.