We present a new record of ice thickness change, reconstructed at nearly 100,000 sites on the Greenland Ice Sheet (GrIS) from laser altimetry measurements spanning the period 1993-2012, partitioned into changes due to surface mass balance (SMB) and ice dynamics. We estimate a mean annual GrIS mass loss of 243 ± 18 Gt·y The spatial pattern of dynamic mass loss changed over this time as dynamic thinning rapidly decreased in southeast Greenland but slowly increased in the southwest, north, and northeast regions. Most outlet glaciers have been thinning during the last two decades, interrupted by episodes of decreasing thinning or even thickening. Dynamics of the major outlet glaciers dominated the mass loss from larger drainage basins, and simultaneous changes over distances up to 500 km are detected, indicating climate control. However, the intricate spatiotemporal pattern of dynamic thickness change suggests that, regardless of the forcing responsible for initial glacier acceleration and thinning, the response of individual glaciers is modulated by local conditions. Recent projections of dynamic contributions from the entire GrIS to SLR have been based on the extrapolation of four major outlet glaciers. Considering the observed complexity, we question how well these four glaciers represent all of Greenland's outlet glaciers.Greenland Ice Sheet | laser altimetry | mass balance | ice dynamics
Asset Management is an important component of an infrastructure project. A significant cost is involved in maintaining and updating the asset information. Data collection is the most time-consuming task in the development of an asset management system. In order to reduce the time and cost involved in data collection, this paper proposes a low cost Mobile Mapping System using an equipped laser scanner and cameras. First, the feasibility of low cost sensors for 3D asset inventory is discussed by deriving appropriate sensor models. Then, through calibration procedures, respective alignments of the laser scanner, cameras, Inertial Measurement Unit and GPS (Global Positioning System) antenna are determined. The efficiency of this Mobile Mapping System is experimented by mounting it on a truck and golf cart. By using derived sensor models, geo-referenced images and 3D point clouds are derived. After validating the quality of the derived data, the paper provides a framework to extract road assets both automatically and manually using techniques implementing RANSAC plane fitting and edge extraction algorithms. Then the scope of such extraction techniques along with a sample GIS (Geographic Information System) database structure for unified 3D asset inventory are discussed.
Predicting and mapping high water table elevation in coastal landscapes is critical for both science application projects like inundation risk analysis and engineering projects like pond design and maintenance. Previous studies of water table mapping focused on the application of geostatistical methods, which cannot predict values beyond an observation spatial domain or generate an ideal pattern for regions with sparse measurements. In this study, we evaluated the multiple linear regression (MLR) and support vector machine (SVM) techniques for high water table prediction and mapping using fine spatial resolution lidar‐derived Digital Elevation Model (DEM) data, and designed an application protocol of these two techniques for high water table mapping in a coastal landscape where groundwater, tide, and surface water are related. Testing results showed that SVM largely improved the high water table prediction with a mean absolute error (MAE) of 1.22 feet and root mean square error (RMSE) of 2.22 feet compared to the application of the ordinary Kriging method which could not generate a reasonable water table. MLR was also promising with a MAE of around 2 feet and RMSE of around 3 feet. The study suggests that both MLR and SVM are valuable alternatives to estimate high water table elevation in Florida. Fine resolution lidar DEMs are beneficial for high water table prediction and mapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.