Traditional 3D Convolutional Neural Networks (CNNs) are computationally expensive, memory intensive, prone to overfit, and most importantly, there is a need to improve their feature learning capabilities. To address these issues, we propose Rectified Local Phase Volume (ReLPV) block, an efficient alternative to the standard 3D convolutional layer. The ReLPV block extracts the phase in a 3D local neighborhood (e.g., 3 × 3 × 3) of each position of the input map to obtain the feature maps. The phase is extracted by computing 3D Short Term Fourier Transform (STFT) at multiple fixed low frequency points in the 3D local neighborhood of each position. These feature maps at different frequency points are then linearly combined after passing them through an activation function. The ReLPV block provides significant parameter savings of at least, 3 3 to 13 3 times compared to the standard 3D convolutional layer with the filter sizes 3 × 3 × 3 to 13 × 13 × 13, respectively. We show that the feature learning capabilities of the ReLPV block are significantly better than the standard 3D convolutional layer. Furthermore, it produces consistently better results across different 3D data representations. We achieve state-of-the-art accuracy on the volumetric ModelNet10 and ModelNet40 datasets while utilizing only 11% parameters of the current state-of-theart. We also improve the state-of-the-art on the UCF-101 split-1 action recognition dataset by 5.68% (when trained from scratch) while using only 15% of the parameters of the state-of-the-art. The project webpage is available at
Recognizing facial expressions is one of the central problems in computer vision. Temporal image sequences have useful spatio-temporal features for recognizing expressions. In this paper, we propose a new 3D Convolution Neural Network (CNN) that can be trained end-to-end for facial expression recognition on temporal image sequences without using facial landmarks. More specifically, a novel 3D convolutional layer that we call Local Binary Volume (LBV) layer is proposed. The LBV layer, when used with our newly proposed LBVCNN network, achieve comparable results compared to state-of-the-art landmark-based or without landmark-based models on image sequences from CK+, Oulu-CASIA, and UNBC McMaster shoulder pain datasets. Furthermore, our LBV layer reduces the number of trainable parameters by a significant amount when compared to a conventional 3D convolutional layer. As a matter of fact, when compared to a 3 × 3 × 3 conventional 3D convolutional layer, the LBV layer uses 27 times less trainable parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.