The employment of microgrids in smart cities is not only changing the landscape of power generation, transmission, and distribution but it helps in green alleviation by converting passive consumers into active produces (using renewable energy sources). Real-time monitoring is a crucial factor in the successful adoption of microgrids. Real-time state estimation of a microgrid is possible through internet-of-things (IoT). State estimation can provide the necessary monitoring of grid for many system optimization applications. We will use raw and missing data before we learn from data, the processing must be done. This paper describes various Kalman variants use for preprocessing. In this paper a formulated approach along with algorithms are described for optimal state estimation and forecasting, with weights update using deep neural networks (DNN) is presented to enable accurate measurements at component and system level model analysis in an IoT enabled microgrid. The real load data experiments are carried out on the IEEE 118-bus benchmark system for the power system state estimation and forecasting. This research paves a way for developing a novel DNN based algorithms for a power system under dynamically varying conditions and corresponding time dependencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.