The increasing complexity of HPC systems has introduced new sources of variability, which can contribute to signi cant di erences in run-to-run performance of applications. With components at various levels of the system contributing variability, application developers and system users are now faced with the di cult task of running and tuning their applications in an environment where runto-run performance measurements can vary by as much as a factor of two to three. In this study, we classify, quantify, and present ways to mitigate the sources of run-to-run variability on Cray XC systems with Intel Xeon Phi processors and a dragon y interconnect. We further demonstrate that the code-tuning performance observed in a variability-mitigating environment correlates with the performance observed in production running conditions.
Abstract-Numerical simulations are used to analyze the effectiveness of alternate public policy choices in limiting the spread of infections. In practice, it is usually not feasible to predict their precise impacts due to inherent uncertainties, especially at the early stages of an epidemic. One option is to parameterize the sources of uncertainty and carry out a parameter sweep to identify their robustness under a variety of possible scenarios. The Self Propelled Entity Dynamics (SPED) model has used this approach successfully to analyze the robustness of different airline boarding and deplaning procedures. However, the time taken by this approach is too large to answer questions raised during the course of a decision meeting. In this paper, we use a modified approach that pre-computes simulations of passenger movement, performing only the disease-specific analysis in real time. A novel contribution of this paper lies in using a low discrepancy sequence (LDS) in the parameter sweep, and demonstrating that it can lead to a reduction in analysis time by one to three orders of magnitude over the conventional latticebased parameter sweep. However, its parallelization suffers from greater load imbalance than the conventional approach. We examine this and relate it to number-theoretic properties of the LDS. We then propose solutions to this problem. Our approach and analysis are applicable to other parameter sweep problems too. The primary contributions of this paper lie in the new approach of low discrepancy parameter sweep and in exploring solutions to challenges in its parallelization, evaluated in the context of an important public health application.
Dynamic Voltage and Frequency Scaling (DVFS) typically adapts CPU power consumption by modifying a processor's operating frequency (and the associated voltage). Typical DVFS approaches include using default strategies such as running at the lowest or the highest frequency or reacting to the CPU's runtime load to reduce or increase frequency based on the CPU usage. In this article, we argue that a compile-time approach to CPU frequency selection is achievable for affine program regions and can significantly outperform runtimebased approaches. We first propose a lightweight runtime approach that can exploit the properties of the power profile specific to a processor, outperforming classical Linux governors such as powersave or on-demand for computational kernels. We then demonstrate that, for affine kernels in the application, a purely compiletime approach to CPU frequency and core count selection is achievable, providing significant additional benefits over the runtime approach. Our framework relies on a one-time profiling of the target CPU, along with a compile-time categorization of loop-based code segments in the application. These are combined to determine at compile-time the frequency and the number of cores to use to execute each affine region to optimize energy or energy-delay product. Extensive evaluation on 60 benchmarks and 5 multi-core CPUs show that our approach systematically outperforms the powersave Linux governor while also improving overall performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.