Abstract. We give an explicit combinatorial description of the multiplicity as well as the Hilbert function of the tangent cone at any point on a Schubert variety in the symplectic Grassmannian.
We prove a general inequality for estimating the number of points of arbitrary complete intersections over a finite field. This extends a result of Deligne for nonsingular complete intersections. For normal complete intersections, this inequality generalizes also the classical Lang-Weil inequality. Moreover, we prove the Lang-Weil inequality for affine as well as projective varieties with an explicit description and a bound for the constant appearing therein. We also prove a conjecture of Lang and Weil concerning the Picard varieties andétale cohomology spaces of projective varieties. The general inequality for complete intersections may be viewed as a more precise version of the estimates given by Hooley and Katz. The proof is primarily based on a suitable generalization of the Weak Lefschetz Theorem to singular varieties together with some Bertini-type arguments and the Grothendieck-Lefschetz Trace Formula. We also describe some auxiliary results concerning theétale cohomology spaces and Betti numbers of projective varieties over finite fields and a conjecture along with some partial results concerning the number of points of projective algebraic sets over finite fields.
We obtain some e!ective lower and upper bounds for the number of (n, k)-MDS linear codes over % O . As a consequence, one obtains an asymptotic formula for this number. These results also apply for the number of inequivalent representations over % O of the uniform matroid or, alternatively, the number of % O -rational points of certain open strata of Grassmannians. The techniques used in the determination of bounds for the number of MDS codes are applied to deduce several geometric properties of certain sections of Grassmannians by coordinate hyperplanes.
Academic Press
We consider the question of determining the maximum number of points on sections of Grassmannians over finite fields by linear subvarieties of the Plücker projective space of a fixed codimension. This corresponds to a known open problem of determining the complete weight hierarchy of linear error correcting codes associated to Grassmann varieties. We recover most of the known results as well as prove some new results. A basic tool used is a characterization of decomposable subspaces of exterior powers, that is, subspaces in which every nonzero element is decomposable. Also, we use a generalization of the Griesmer-Wei bound that is proved here for arbitrary linear codes.
Abstract-Affine Grassmann codes are a variant of generalized Reed-Muller codes and are closely related to Grassmann codes. These codes were introduced in a recent work by Beelen et al. Here, we consider, more generally, affine Grassmann codes of a given level. We explicitly determine the dual of an affine Grassmann code of any level and compute its minimum distance. Further, we ameliorate the results by Beelen et al. concerning the automorphism group of affine Grassmann codes. Finally, we prove that affine Grassmann codes and their duals have the property that they are linear codes generated by their minimum-weight codewords. This provides a clean analogue of a corresponding result for generalized Reed-Muller codes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.