Biochemical changes associated with mushroom browning in Agaricus bisporus and Pleurotus florida were studied. With increasing storage temperature from 0 to 25 • C there was an increase in phenol oxidase activity up to 15 • C followed by a decrease at 25 • C in both mushrooms. Loss of water content in fresh mushrooms had a direct relationship with phenol oxidase activity, which could be correlated with the visual degree of mushroom browning. A bisporus displayed higher phenol oxidase activity, about two to three times that of P florida. The phenol oxidase activity in both mushroom varieties was studied on a range of phenolic compounds with diverse functional groups. A bisporus exhibited intense reactions to tyrosine and catechol, while P florida did so to guaiacol and catechol. The two mushrooms differed in the degree of their oxidation reactions relative to the functional groups. In A bisporus the skin had more phenolics than the flesh; P florida contained fewer phenolics, while the stalks of both mushrooms had low phenolics contents. FTIR spectral studies of intact mushrooms during browning showed a characteristic decrease in phenolic hydroxyls; first-derivative spectra were used to assess relative peak intensities. Of the chemicals tested for their effect on phenol oxidase activity, 0.1 M sodium carbonate favoured the immediate development of an orange chromogen in P florida, while mild alkaline solutions favoured the enzyme activity, and acidic solutions at the 0.1 M level completely inhibited the browning reaction in both mushrooms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.