Mitotic kinesin-5 bipolar motor proteins perform essential functions in mitotic spindle dynamics by crosslinking and sliding antiparallel microtubules (MTs) apart within the mitotic spindle. Two recent studies have indicated that single molecules of Cin8, the Saccharomyces cerevisiae kinesin-5 homolog, are minus end-directed when moving on single MTs, yet switch directionality under certain experimental conditions (Gerson-Gurwitz et al., EMBO J 30:4942-4954, 2011; Roostalu et al., Science 332:94-99, 2011). This finding was unexpected since the Cin8 catalytic motor domain is located at the N-terminus of the protein, and such kinesins have been previously thought to be exclusively plus end-directed. In addition, the essential intracellular functions of kinesin-5 motors in separating spindle poles during mitosis can only be accomplished by plus end-directed motility during antiparallel sliding of the spindle MTs. Thus, the mechanism and possible physiological role of the minus end-directed motility of kinesin-5 motors remain unclear. Experimental and theoretical studies from several laboratories in recent years have identified additional kinesin-5 motors that are bidirectional, revealed structural determinants that regulate directionality, examined the possible mechanisms involved and have proposed physiological roles for the minus end-directed motility of kinesin-5 motors. Here, we summarize our current understanding of the remarkable ability of certain kinesin-5 motors to switch directionality when moving along MTs.
Non-obese diabetic (NOD) mice spontaneously develop autoimmunity to the insulin producing beta cells leading to insulin-dependent diabetes. In this study we developed and used new data analysis and mining approaches on combined proteome and transcriptome (molecular phenotype) data to define pathways affected by abnormalities in peripheral leukocytes of young NOD female mice. Cells were collected before mice show signs of autoimmunity (age, 2-4 weeks). We extracted both protein and RNA from NOD and C57BL/6 control mice to conduct both proteome analysis by two-dimensional gel electrophoresis and transcriptome analysis on Affymetrix expression arrays. We developed a new approach to analyze the two-dimensional gel proteome data that included twoway analysis of variance, cluster analysis, and principal component analysis. Lists of differentially expressed proteins and transcripts were subjected to pathway analysis using a commercial service. From the list of 24 proteins differentially expressed between strains we identified two highly significant and interconnected networks centered around oncogenes (Myc and Mycn) and apoptosis-related genes (Bcl2 and Casp3). The 273 genes with significant strain differences in RNA expression levels created six interconnected networks with a significant over-representation of genes related to cancer, cell cycle, and cell death. They contained many of the same genes found in the proteome networks (including Myc and Mycn). The combination of the eight, highly significant networks created one large network of 272 genes of which 82 had differential expression between strains either at the protein or the RNA level. We conclude that new proteome data analysis strategies and combined information from proteome and transcriptome can enhance the insights gained from either type of data alone. The overall systems biology of prediabetic NOD mice points toward abnormalities in regulation of the opposing processes of cell re- The effort to sequence mammalian genomes has spurred a rapid development of research tools that allow comprehensive evaluations of molecular phenotypes to study systems biology rather than just focusing on single molecules or pathways. Microarrays allow comprehensive characterization of transcriptomes, and 2D 1 gel or gel-free proteome technology allows evaluation of expression of thousands of proteins in a single procedure. It is now possible to determine to what extent genetic or external manipulation of a biological system alters the expression of any of thousands of genes and proteins. In contrast to the traditional approach, the hypothesis that explains the connections observed is not created until after data have been collected. Although these methods are not always successful given the inevitable limitations and pitfalls inherent to all technology, they have certainly created exciting new insights in many fields. The ability of this discovery approach to make completely unpredictable and novel discoveries by application of a systematic process has been authenticated by...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.