A primary objective of synthetic biology is the construction of genetic circuits with behaviors that can be predicted based on the properties of the constituent genetic parts from which they are built. However a significant issue in the construction of synthetic genetic circuits is a phenomenon known as context dependence in which the behavior of a given part changes depending on the choice of adjacent or nearby parts. Interactions between parts compromise the modularity of the circuit, impeding the implementation of predictable genetic constructs. To address this issue, investigators have devised genetic insulators that prevent these unintended context-dependent interactions between neighboring parts. One of the most commonly used insulators in bacterial systems is the self-cleaving ribozyme RiboJ. Despite its utility as an insulator, there has been no systematic quantitative assessment of the effect of RiboJ on the expression level of downstream genetic parts. Here, we characterized the impact of insulation with RiboJ on expression of a reporter gene driven by a promoter from a library of 24 frequently employed constitutive promoters in an Escherichia coli model system. We show that, depending on the strength of the promoter, insulation with RiboJ increased protein abundance between twofold and tenfold and increased transcript abundance by an average of twofold. This result demonstrates that genetic insulators in E. coli can impact the expression of downstream genes, information that is essential for the design of predictable genetic circuits and constructs.Electronic supplementary materialThe online version of this article (10.1186/s13036-018-0115-6) contains supplementary material, which is available to authorized users.
Accumulating evidence over the past three decades suggests that altered calcium signaling during development may be a major driving force for adult pathophysiological events. Well over a hundred human genes encode proteins that are specifically dedicated to calcium homeostasis and calcium signaling, and the majority of these are expressed during embryonic development. Recent advances in molecular techniques have identified impaired calcium signaling during development due to either mutations or dysregulation of these proteins. This impaired signaling has been implicated in various human diseases ranging from cardiac malformations to epilepsy. Although the molecular basis of these and other diseases have been well studied in adult systems, the potential developmental origins of such diseases are less well characterized. In this review, we will discuss the recent evidence that examines different patterns of calcium activity during early development, as well as potential medical conditions associated with its dysregulation. Studies performed using various model organisms, including zebrafish, Xenopus, and mouse, have underscored the critical role of calcium activity in infertility, abortive pregnancy, developmental defects, and a range of diseases which manifest later in life. Understanding the underlying mechanisms by which calcium regulates these diverse developmental processes remains a challenge; however, this knowledge will potentially enable calcium signaling to be used as a therapeutic target in regenerative and personalized medicine.
We report the complete genome sequences of 19 cluster CA bacteriophages isolated from environmental samples using Rhodococcus erythropolis as a host. All of the phages are Siphoviridae, have similar genome lengths (46,314 to 46,985 bp) and G+C contents (58.5 to 58.8%), and share nucleotide sequence similarity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.