Pengklasifikasian kelompok usia dibangun berdasarkan ciri-ciri dari fitur wajah. klasifikasi usia berdasarkan citra wajah perlu dilakukan dengan lebih akurat agar dapat berguna dalam sistem pengenalan usia manusia. Beberapa kesulitan dalam pengenalan wajah yang sering muncul karena variabilitas wajah seperti ekspresi, penuaan, variasi kumis dan sebagainya. Metode filter gabor dikenal sebagai detektor ciri yang sukses serta memiliki kemampuan mengeliminasi parameter variabilitas wajah yang pada metode lainnya sering menggangggu dalam proses pengenalan. Dengan menggunakan metode Gabor filter yang terbukti handal digunakan untuk memecahkan masalah agar pengenalan usia berdasarkan wajah dapat dilakukan dengan lebih akurat. Hasil penelitian menunjukkan bahwa penerapan metode Gabor Filter dan Artificial Neural Network pada masalah pengenalan usia berdasarkan citra wajah berhasil mendapatkan akurasi yaitu sebesar 83% dengan menggunakan pengujian Confusion Matrix. Dengan demikian penerapan metode Gabor Filter dan Artificial Neural Network pada masalah pengenalan usia berdasarkan citra wajah cukup akurat, dan dapat diimplementasikan. Kata kunci: Klasifikasi Usia, Wajah, ANN, Gabor Filter. Classification of age groups is built on the characteristics of facial features. Age classifications based on facial images need to be done more accurately in order to be useful in the human age recognition system. Some difficulties in facial recognition that often arise due to facial variability such as expression, aging, mustache variations and so on. Gabor filter method is known as a successful feature detector and has the ability to eliminate facial variability parameters which in other methods often interfere in the recognition process. By using the Gabor filter method which is proven to be reliable it is used to solve problems so that face recognition based on faces can be done more accurately. The results showed that the application of the Gabor Filter and Artificial Neural Network method on the problem of age recognition based on face images managed to get an accuracy of 83% using the Confusion Matrix test. Thus the application of the Gabor Filter and Artificial Neural Network method to the problem of age recognition based on face images is quite accurate, and can be implemented.Keywords: Age Classification, Face, ANN, Gabor Filter
Terjadinya perubahan keadaan air tambak yang tidak dapat diprediksi, yang disebabkan oleh suhu, kandungan atau unsur-unsur yang terlarut dalam air tambak dapat mempengaruhi mutu dari hasil budidaya tambak, dan petani tidak dapat memantau terus-menerus perubahan keadaan air tambak mereka secara langsung, maka dibuatlah penelitian ini dengan tujuan membuat sistem monitoring untuk menginformasikan kualitas dan kekeruhan air pada tambak dengan konsep Internet of Things (IoT) dengan menampilkan secara realtime nilai kualitas dan kekeruhan air menggunakan Smartphone. Obyek pengujian berasal dari dua sampel air tambak yang berbeda dan satu air sumur sebagai pembanding. Metode pada sistem monitoring menggunakan dua sensor agar lebih akurat dalam melihat kondisi air tambak, sensor TDS meter untuk mendeteksi kualitas air dan sensor SEN0189 untuk mendeteksi kekeruhan air, kemudian data sensor dikirim menggunakan konsep IoT dimana mikrokontroler NodeMCU sebagai penerima data sensor bertindak sebagai pengirim informasi keadaan air secara online ke Smartphone menggunakan aplikasi Blynk. Dari hasil pengujian sistem monitoring pada aplikasi Blynk dapat menampilkan grafik dari data kualitas air dalam satuan ppm dan data kekeruhan air dalam satuan mg/l, rata-rata sensor mendapatkan data untuk kedua sampel air tambak dengan nilai yang tinggi, sedangkan sampel air sumur lebih rendah.Unpredictable changes in pond water conditions caused by temperature, content, or dissolved elements in pond water can affect the quality of freshwater aquaculture. As farmers are not able to continuously monitor changes in the state of their pond water directly, this study was made with the aim of creating a monitoring system to inform pond water quality and turbidity with the Internet of Things (IoT) concept, by displaying in real-time the quality and turbidity values using a smartphone. The objects of the test were taken from two different pond water samples and one well water for comparison. The method used in the monitoring system is two sensors, in order to increase the accuracy in observing the condition of pond water, where the TDS meter sensor was used to detect water quality, and the SEN0189 sensor was to detect water turbidity. The sensor data was sent using the IoT concept, where the NodeMCU microcontroller as the sensor data receiver sends information on the condition of the water to the Smartphone using the Blynk application. The results of the monitoring system test on the Blynk application can display the graph of water quality data in ppm units and water turbidity data in mg/l units, where the average sensor receives data for both pond water samples with high values, while well water samples are lower.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.