The K2 stream cipher, designed for 32-bit words, is an ISO/IEC 18033 standard and is listed as a recommended algorithm used by the Japanese government in the CRYPTREC project. The main feature of the K2 algorithm is the use of a dynamic feedback control mechanism between the two linear feedback shift registers, which makes the analysis of the K2 algorithm more difficult. In this paper, for its simplified version algorithm, a key recovery attack is performed by using differential attacks. Firstly, for the unknown key, the same IV is fixed in two chosen IV differential attacks, and we use the input differences and the output differences of the S-box to recover the input of S-box; the internal state values can be uniquely determined by taking intersection of the input of S-box. This technology is used to improve the key recovery attack of seven-round algorithm proposed by Deike Priemuth-Schmid. Secondly, we find the constraint relationship between the keystream equations and the unknown differences by introducing the guess difference bit and eliminate the impossible differences by the constraint relationship. Thus, we expand the key recovery attack from seven to nine rounds. The time complexity of the attack is $\boldsymbol{O} \boldsymbol{(2^{113.93})}$, the data complexity is $\boldsymbol{O}\boldsymbol{(2^{8.71})}$ and the success rate is $\textbf{99.07\%}$.
It had always been believed that there was an inherent barrier to Differential Fault Attack (DFA) on the nonce-based authenticated encryption algorithm. At CHES 2016, Saha et al. proposed an Internal Differential Fault Attack on a parallelizable counter-mode algorithm. They induce the attack to classical DFA at the expense of one more fault injection in every encryption process. In this paper, we propose the DFA on HYENA, which is a nonce-based authenticated encryption mode for GIFT-128. Our work is the first pure classical DFA on a nonce-based authenticated encryption algorithm with only one fault injected in every decryption process. Firstly, we give the DFA on GIFT-128 with a fault injected into the 39th-round input. Based on this work, we inject a fault in the underlying GIFT-128 of a HYENA decryption process and make this decryption process still generate the correct tag and output plaintext. This makes the necessary conditions of DFA satisfied. Experiments show that at most 56 key bits of HYENA can be recovered with only a few faulty ciphertexts. In addition, our fault injection is easier to achieve than most other work about fault attack, because the injection location is relatively random and the fault type can be arbitrary. It should be noted that the left 72 key bits cannot be recovered in this way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.