Dihydrofolate reductase-thymidylate synthase (DHFR-TS) from Plasmodium falciparum, a validated target for antifolate antimalarials, is a dimeric enzyme with interdomain interactions significantly mediated by the junction region as well as the Plasmodium-specific additional sequences (inserts) in the DHFR domain. The X-ray structures of both the wild-type and mutant enzymes associated with drug resistance, in complex with either a drug which lost, or which still retains, effectiveness for the mutants, reveal features which explain the basis of drug resistance resulting from mutations around the active site. Binding of rigid inhibitors like pyrimethamine and cycloguanil to the enzyme active site is affected by steric conflict with the side-chains of mutated residues 108 and 16, as well as by changes in the main chain configuration. The role of important residues on binding of inhibitors and substrates was further elucidated by site-directed and random mutagenesis studies. Guided by the active site structure and modes of inhibitor binding, new inhibitors with high affinity against both wild-type and mutant enzymes have been designed and synthesized, some of which have very potent anti-malarial activities against drug-resistant P. falciparum bearing the mutant enzymes.
Plasmodium falciparum strains bearing quadruple mutations of dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) at codons 51, 59, 108, and 164 are highly resistant to pyrimethamine (PYR), a diaminopyrimidine, but sensitive to WR99210 (WR), a cycloguanil analog, suggesting different enzyme-inhibitor binding interactions. A combination of these inhibitors to delay the onset of antifolate resistance is proposed. Using error-prone PCR, libraries of random mutants of wild-type PfDHFR and PfDHFR-TS were generated and used to transform Escherichia coli, and transformants were then selected for PYR or WR resistance. Mutants highly resistant to either PYR or WR were also generated from libraries obtained from further random mutagenesis of quadruple mutants (QM) with mutations in PfDHFR or PfDHFR-TS. For reversion mutants carrying altered residues I51N, N108S, and L164I, a further mutation of D54N was required to achieve resistance against WR, but these mutants regained sensitivity to PYR. When a combination of PYR and WR was used, fewer resistant mutants were generated from both mutant libraries using the QM gene templates. The effectiveness of the drug combination in reducing the appearance of resistance mutations is likely due to conflicting requirements for mutations conferring resistance to the two drugs. Thus, a combination of inhibitors from these two drug classes should be effective in impeding the emergence of P. falciparum resistance to antifolates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.