Macrophages are a heterogeneous cell population involved in tissue homeostasis, inflammation, and various pathologies. Although the major tissue-resident macrophage populations have been extensively studied, interstitial macrophages (IMs) residing within the tissue parenchyma remain poorly defined. Here we studied IMs from murine lung, fat, heart, and dermis. We identified two independent IM subpopulations that are conserved across tissues: Lyve1loMHCIIhiCX3CR1hi (Lyve1loMHCIIhi) and Lyve1hiMHCIIloCX3CR1lo (Lyve1hiMHCIIlo) monocyte-derived IMs, with distinct gene expression profiles, phenotypes, functions, and localizations. Using a new mouse model of inducible macrophage depletion (Slco2b1flox/DTR), we found that the absence of Lyve1hiMHCIIlo IMs exacerbated experimental lung fibrosis. Thus, we demonstrate that two independent populations of IMs coexist across tissues and exhibit conserved niche-dependent functional programming.
Animal models have highlighted the importance of innate lymphoid cells (ILCs) in multiple immune responses. However, technical limitations have hampered adequate characterization of ILCs in humans. Here, we used mass cytometry including a broad range of surface markers and transcription factors to accurately identify and profile ILCs across healthy and inflamed tissue types. High dimensional analysis allowed for clear phenotypic delineation of ILC2 and ILC3 subsets. We were not able to detect ILC1 cells in any of the tissues assessed, however, we identified intra-epithelial (ie)ILC1-like cells that represent a broader category of NK cells in mucosal and non-mucosal pathological tissues. In addition, we have revealed the expression of phenotypic molecules that have not been previously described for ILCs. Our analysis shows that human ILCs are highly heterogeneous cell types between individuals and tissues. It also provides a global, comprehensive, and detailed description of ILC heterogeneity in humans across patients and tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.