BackgroundInequalities in geographic access to health care result from the configuration of facilities, population distribution, and the transportation infrastructure. In recent accessibility studies, the traditional distance measure (Euclidean) has been replaced with more plausible measures such as travel distance or time. Both network and raster-based methods are often utilized for estimating travel time in a Geographic Information System. Therefore, exploring the differences in the underlying data models and associated methods and their impact on geographic accessibility estimates is warranted.MethodsWe examine the assumptions present in population-based travel time models. Conceptual and practical differences between raster and network data models are reviewed, along with methodological implications for service area estimates. Our case study investigates Limited Access Areas defined by Michigan’s Certificate of Need (CON) Program. Geographic accessibility is calculated by identifying the number of people residing more than 30 minutes from an acute care hospital. Both network and raster-based methods are implemented and their results are compared. We also examine sensitivity to changes in travel speed settings and population assignment.ResultsIn both methods, the areas identified as having limited accessibility were similar in their location, configuration, and shape. However, the number of people identified as having limited accessibility varied substantially between methods. Over all permutations, the raster-based method identified more area and people with limited accessibility. The raster-based method was more sensitive to travel speed settings, while the network-based method was more sensitive to the specific population assignment method employed in Michigan.ConclusionsDifferences between the underlying data models help to explain the variation in results between raster and network-based methods. Considering that the choice of data model/method may substantially alter the outcomes of a geographic accessibility analysis, we advise researchers to use caution in model selection. For policy, we recommend that Michigan adopt the network-based method or reevaluate the travel speed assignment rule in the raster-based method. Additionally, we recommend that the state revisit the population assignment method.
We investigated the effects of improved indoor environmental quality (IEQ) on perceived health and productivity in occupants who moved from conventional to green (according to Leadership in Energy and Environmental Design ratings) office buildings. In 2 retrospective-prospective case studies we found that improved IEQ contributed to reductions in perceived absenteeism and work hours affected by asthma, respiratory allergies, depression, and stress and to self-reported improvements in productivity. These preliminary findings indicate that green buildings may positively affect public health.
BackgroundRoemer’s Law, a widely cited principle in health care policy, states that hospital beds that are built tend to be used. This simple but powerful expression has been invoked to justify Certificate of Need regulation of hospital beds in an effort to contain health care costs. Despite its influence, a surprisingly small body of empirical evidence supports its content. Furthermore, known geographic factors influencing health services use and the spatial structure of the relationship between hospital bed availability and hospitalization rates have not been sufficiently explored in past examinations of Roemer’s Law. We pose the question, “Accounting for space in health care access and use, is there an observable association between the availability of hospital beds and hospital utilization?”MethodsWe employ an ecological research design based upon the Anderson behavioral model of health care utilization. This conceptual model is implemented in an explicitly spatial context. The effect of hospital bed availability on the utilization of hospital services is evaluated, accounting for spatial structure and controlling for other known determinants of hospital utilization. The stability of this relationship is explored by testing across numerous geographic scales of analysis. The case study comprises an entire state system of hospitals and population, evaluating over one million inpatient admissions.ResultsWe find compelling evidence that a positive, statistically significant relationship exists between hospital bed availability and inpatient hospitalization rates. Additionally, the observed relationship is invariant with changes in the geographic scale of analysis.ConclusionsThis study provides evidence for the effects of Roemer’s Law, thus suggesting that variations in hospitalization rates have origins in the availability of hospital beds. This relationship is found to be robust across geographic scales of analysis. These findings suggest continued regulation of hospital bed supply to assist in controlling hospital utilization is justified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.