We have developed an analytical approach for computing Franck-Condon integrals (FCIs) of harmonic oscillators (HOs) with arbitrary dimensions in which the mode-mixing Duschinsky effect is taken into account. A general formula of FCIs of HOs was obtained and was applied to study the photoelectron spectroscopy of vinyl alcohol and ovalene (C(32)H(14)). The equilibrium geometries, harmonic vibrational frequencies and normal modes of vinyl alcohol, ovalene, and their cations were computed at the B3LYP/aug-cc-pVTZ or the B3LYP/6-31G(d) level, from which Franck-Condon factors were calculated and photoelectron spectra were simulated. The adiabatic ionization energies of vinyl alcohol were also computed by extrapolating the CCSD(T) energies to the complete basis set limit with aug-cc-pVXZ (X = D, T, Q, 5). The simulated photoelectron spectra of both vinyl alcohol and ovalene are in agreement with the experiments. The computed adiabatic ionization energies of syn- and anti-vinyl alcohol are in consistent with the experiment within 0.008 eV and 0.014 eV, respectively. We show, for the first time, that the analytical approach of computing FCIs is also efficient and promising for the studies of vibronic spectra of macrosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.