A potential therapeutic agent for human head and neck cancer (HNC), cetrimonium bromide (CTAB), was identified through a cell-based phenotype-driven high-throughput screen (HTS) of 2000 biologically active or clinically used compounds, followed by in vitro and in vivo characterization of its antitumor efficacy. The preliminary and secondary screens were performed on FaDu (hypopharyngeal squamous cancer) and GM05757 (primary normal fibroblasts), respectively. Potential hit compounds were further evaluated for their anticancer specificity and efficacy in combination with standard therapeutics on a panel of normal and cancer cell lines. Mechanism of action, in vivo antitumor efficacy, and potential lead compound optimizations were also investigated. In vitro, CTAB interacted additively with ␥ radiation and cisplatin, two standard HNC therapeutic agents.CTAB exhibited anticancer cytotoxicity against several HNC cell lines, with minimal effects on normal fibroblasts; a selectivity that exploits cancer-specific metabolic aberrations. The central mode of cytotoxicity was mitochondria-mediated apoptosis via inhibition of H ϩ -ATP synthase activity and mitochondrial membrane potential depolarization, which in turn was associated with reduced intracellular ATP levels, caspase activation, elevated sub-G 1 cell population, and chromatin condensation. In vivo, CTAB ablated tumor-forming capacity of FaDu cells and delayed growth of established tumors. Thus, using an HTS approach, CTAB was identified as a potential apoptogenic quaternary ammonium compound possessing in vitro and in vivo efficacy against HNC models.
Purpose: This study aims to identify a novel therapeutic agent for head and neck cancer and to evaluate its antitumor efficacy. Experimental Design: A cell-based and phenotype-driven high-throughput screening of f2,400 biologically active or clinically used compounds was done using a tetrazolium-based assay on FaDu (hypopharyngeal squamous cancer) and NIH 3T3 (untransformed mouse embryonic fibroblast) cells, with secondary screening done on C666-1 (nasopharyngeal cancer) and GM05757 (primary normal human fibroblast) lines. The ''hit'' compound was assayed for efficacy in combination with standard therapeutics on a panel of human cancer cell lines. Furthermore, its mode of action (using transmission electron microscopy and flow cytometry) and its in vivo efficacy (using xenograft models) were evaluated. Results: Benzethonium chloride was identified as a novel cancer-specific compound. For benzethonium (48-hour incubation), the dose required to reduce cell viability by 50% was 3
The importance of aberrant signal transduction in the development and progression of cancers including multiple myeloma (MM) is well recognized, although the detailed regulation of signaling networks in relation to oncogenic mutations remains incompletely understood. However, this subject is becoming increasing relevant to clinical oncology due the rapid development of biological-based therapies that can target signaling pathways. Analytical methods that can be applied to clinical samples to measure complex populations of cells and phenotype them for multiple activation states are now feasible due to the recent advances in intracellular signal techniques, flow cytometry and phospho-antibodies. Using multi-parameter flow cytometry, we monitored phospho-protein responses to activators/cytokines and signal transduction inhibitors in a panel of 14 extensively characterized human MM cell lines with heterogeneous molecular abnormalities. A panel of 4-phospho-specific antibodies: anti-pS6, anti-ERK1/2, anti-pAKT and anti-pSTAT3 that represent downstream target genes of signaling pathways known to play central roles in myelomagenesis were used in the initial analysis. Sixteen conditions (basal, inhibitor, activator alone, activator and inhibitor) were studied to generated 64 readouts designed to survey altered signal transduction in the 14 cell lines. We collected data on unstimulated cells and cells stimulated for 7–10 min with IL-6, IGF-1 or FGF or cells inhibited with the signal transduction inhibitors U0126 (MEK), rapamycin (mTOR) or LY294002 (PI3-K). Repeat measurements were collected and the technique and monoclonal antibodies displayed a high level of reproducibly. In contrast, the basal, cytokine and inhibitor responses between cell lines varied considerably reflecting the molecular heterogeneity at the level of signaling responses. The protocols that have been refined and validated in myeloma cell lines are now being applied to primary bone marrow samples from MM patients. Although the same size thus far is small, phospho-protein responses among primary CD138 positive myeloma cells show considerable induction and variance of AKT, MAPK, STAT3 and pS6 phosphorylation. In some MM tumor samples treatment with inhibitors suggest constitutive activation of these signaling pathways while in others the nodes remain activable with phosphorylation above the basal state following stimulation. The data further suggests that MAPK phosphorylation following aFGF stimulation displays significant variance among MM samples and correlates with the detection of t(4;14) translocation by FISH analysis. Additional samples are being assessed and correlation of phospho-protein responses with clinical parameters and cytogenetics will be reported. The data demonstrate that multi-parameter flow cytometry can be applied to myeloma tumor samples to study the phospho-proteome and that considerable heterogeneity exists at the level of signaling responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.