Eight near-term fetal lambs were studied acutely in utero to determine role of platelet-activating factor (PAF) in the regulation of vasomotor tone in systemic and pulmonary circulations in the immediate perinatal period. Four fetal lambs were studied predelivery and 2 h postdelivery to determine circulating PAF levels. Aortic and pulmonary arterial pressures and cardiac output were measured continuously, and systemic and pulmonary vascular resistances were calculated. Left pulmonary arterial blood flow was also measured in four fetal lambs. After delivery and oxygenation, circulating PAF levels fell significantly. When WEB-2170, a specific PAF-receptor antagonist, was infused to block effect of endogenous PAF in the eight near-term fetal lambs, systemic vascular resistance fell 30% but pulmonary vascular resistance fell dramatically by 68%. Specificity of WEB-2170 was tested in juvenile lambs and was found to be very specific in lowering vasomotor tone only when tone was elevated by action of PAF. Our data show that endogenous PAF levels in the fetus contribute to maintain a high basal systemic and pulmonary vasomotor tone and that a normal fall in circulating PAF levels after birth and oxygenation may facilitate fall in pulmonary vascular resistance at birth.
In adult sheep, platelet-activating factor (PAF) effects include systemic hypotension and pulmonary hypertension. To identify developmental differences in vascular responses to PAF, we studied the effects of C18- and C16-PAF in 49 +/- 2- (SE) day-old lambs. Responses of upstream (arteries and microvessels) and venous segments of the lung to C18-PAF were determined both in vivo and in isolated lungs. In isolated lungs, the role of eicosanoids in PAF effects was also determined. In vivo, both C18- and C16-PAF caused a significant increase in systemic and pulmonary vascular resistance. The magnitude of vascular responses to C16-PAF was greater than that to C18-PAF. C18-PAF constricted both upstream and venous segments of the pulmonary circulation. Cyclooxygenase inhibition in isolated lungs attenuated arterial constriction to C18-PAF, whereas simultaneous cyclooxygenase and lipoxygenase inhibition completely blocked the effects of C18-PAF. In summary, in contrast to PAF effects in adult sheep, PAF constricts both systemic and pulmonary vessels in lambs, with significant pulmonary venous constriction. Eicosanoids, especially lipoxygenase products, play a major role in mediating PAF effects in the lung.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.