Constitutively active AR-V7, one of the major androgen receptor (AR) splice variants lacking the ligand-binding domain, plays a key role in the development of castration-resistant prostate cancer (CRPC) and anti-androgen resistance. However, our understanding of the regulatory mechanisms of AR-V7-driven transcription is limited. Here we report DBC1 as a key regulator of AR-V7 transcriptional activity and stability in CRPC cells. DBC1 functions as a coactivator for AR-V7 and is required for the expression of AR-V7 target genes including CDH2, a mesenchymal marker linked to CRPC progression. DBC1 is required for recruitment of AR-V7 to its target enhancers and for long-range chromatin looping between the CDH2 enhancer and promoter. Mechanistically, DBC1 enhances DNA-binding activity of AR-V7 by direct interaction and inhibits CHIP E3 ligase-mediated ubiquitination and degradation of AR-V7 by competing with CHIP for AR-V7 binding, thereby stabilizing and activating AR-V7. Importantly, DBC1 depletion suppresses the tumorigenic and metastatic properties of CRPC cells. Our results firmly establish DBC1 as a critical AR-V7 coactivator that plays a key role in the regulation of DNA binding and stability of AR-V7 and has an important physiological role in CRPC progression.
Metastasis-associated in colon cancer 1 (MACC1) has been reported to be overexpressed in multiple cancers and promote proliferation, metastasis, cancer stem cell-like properties, and drug resistance of cancer cells. Despite its significance and the considerable knowledge accumulated on the function of MACC1 in various types of human malignancies, regulatory mechanisms underlying MACC1 expression remain unclear. Here we report that MACC1 is a direct target of Wnt/β-catenin signaling pathway in colon cancer cells and that DBC1 functions as a coactivator for Wnt-mediated MACC1 expression by promoting the activity of a LEF1/β-catenin-dependent enhancer located in intron 1 of MACC1 gene. DBC1 is required for LEF1/β-catenin complex formation on the MACC1 enhancer and for long-distance enhancer-promoter interaction of the MACC1 locus. MACC1 expression was increased in colonosphere cells compared to adherent colon cancer cells, and DBC1 overexpression further increased MACC1 expression in colonospheres and promoted sphere-forming abilities of colon cancer cells and drug resistance of colonospheres. Importantly, expressions of MACC1 and DBC1 are positively correlated with each other, upregulated in high-risk groups of colorectal cancer patients, and associated with poor survival. Our results establish MACC1 as a transcriptional target of Wnt/β-catenin signaling and suggest that DBC1 plays a key role in colorectal cancer progression through Wnt/β-catenin-MACC1 signaling axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.