Epidermal growth factor (EGF) and endothelin-1 (ET-1) have been shown to be involved in proliferation and autoregeneration of renal tubular cells. This study aims to investigate the regulatory mechanism of ET-1-mediated EGF receptor (EGFR) transactivation in rat renal tubular cells (NRK-52E). Exposure of NRK-52E cells to ET-1 was found to stimulate the phosphorylation of EGFR and induce reactive oxygen species (ROS) generation. Both NAD(P)H oxidase inhibitor, diphenyliodonium (DPI) and ROS scavenger N-acetylcysteine (NAC), inhibited EGFR transactivation and extracellular signal-regulated kinase (ERK) phosphorylation caused by ET-1. In contrast, blockade of EGFR by AG1478 inhibited the phosphorylation of ERK but not ROS generation following ET-1 exposure. We found that the catalytic cysteine of Src homology 2-containing phosphotyrosine phosphatase (SHP-2) was transiently oxidized by ET-1 treatment in a modified malachite green phosphatase assay. In EGFR co-immunoprecipitation, SHP-2 was also found to interact with EGFR following ET-1 treatment. In SHP-2 knockdown NRK-52E cells, ET-1-induced EGFR transactivation was dramatically elevated and not influenced by NAC. However, GM6001 (an MMP inhibitor) and heparin binding (HB)-EGF neutralizing antibody suppressed this elevation. Our data suggest that ROS-mediated oxidation of SHP-2 is essential for HB-EGF-mediated EGFR transactivation in ET-1 signaling pathway in NRK-52E cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.