Because offshore wind turbines, particularly their foundations, operate in hostile environments, implementing a structural health monitoring system is one of the best ways to monitor their condition, schedule maintenance, and predict possible fatal failures at lower costs. A novel strategy for detecting damage in offshore wind turbine jacket foundations is developed in this work, based on a vibration monitoring methodology that reshapes the data into a multichannel array, with as many channels as correlated sensors with the predicted variable, a 1-D deep convolutional neural network to extract temporal features from the monitored data, and a support vector machine as a final classification layer. The obtained model allows the detection of three types of bar states: healthy bar, cracked bar, and bar with an unlocked bolt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.