The Y chromosome of Drosophila melanogaster has ,20 protein-coding genes. These genes originated from the duplication of autosomal genes and have male-related functions. In 1993, Russell and Kaiser found three Y-linked pseudogenes of the Mst77F gene, which is a testis-expressed autosomal gene that is essential for male fertility. We did a thorough search using experimental and computational methods and found 18 Y-linked copies of this gene (named Mst77Y-1-Mst77Y-18). Ten Mst77Y genes encode defective proteins and the other eight are potentially functional. These eight genes produce $20% of the functional Mst77F-like mRNA, and molecular evolutionary analysis shows that they evolved under purifying selection. Hence several Mst77Y genes have all the features of functional genes. Mst77Y genes are present only in D. melanogaster, and phylogenetic analysis confirmed that the duplication is a recent event. The identification of functional Mst77Y genes reinforces the previous finding that gene gains play a prominent role in the evolution of the Drosophila Y chromosome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.