BackgroundOvarian carcinomas, usually associated with sex hormones dysregulation, are the leading cause of gynecological neoplastic death. In normal ovaries, hormones play a central role in regulating cell proliferation, differentiation, and apoptosis. On the other hand, hormonal alterations also play a variety of roles in cancer. Stimulation by sex hormones potentially affects gene expression, invasiveness, cell growth and angiogenesis. Proteases of the “a disintegrin and metalloproteinase with thrombospondin motifs” (ADAMTS) family are secreted by different cell types and become involved in collagen processing, cleavage of the proteoglycan matrix, and angiogenesis. We evaluated whether sex hormones affect ADAMTS 1 and 4 expression in ovarian cancer cells.MethodsWe analysed mRNA and protein levels in human ovarian tumor cells with different degrees of malignancy, NIH-OVCAR-3 and ES-2, that were treated or not with estrogen, testosterone and progesterone.ResultsOur results suggest that progesterone increases ADAMTS protein and mRNA levels in the lysates from ES-2 cells, and it increases ADAMTS protein in the lysates and conditioned media from NIH-OVCAR-3. Progesterone effects were reversed by RU486 treatment.ConclusionWe conclude that progesterone acts via the progesterone receptor to modulate ADAMTS 1 and 4 levels in ovarian cancer cell lines.Electronic supplementary materialThe online version of this article (doi:10.1186/s13048-016-0219-x) contains supplementary material, which is available to authorized users.
Laminin peptides influence cancer biology. We investigated the role of a lamininderived peptide C16 regulating invadopodia molecules in human prostate cancer cells (DU145). C16 augmented invadopodia activity of DU145 cells, and stimulated expression Tks4, Tks5, cortactin, and membrane-type matrix metalloproteinase 1.Reactive oxygen species generation is also related to invadopodia formation. This prompted us to address whether C16 would induce reactive oxygen species generation in DU145 cells. Quantitative fluorescence and flow cytometry showed that the peptide C16 increased reactive oxygen species in DU145 cells. Furthermore, significant colocalization between Tks5 and reactive oxygen species was observed in C16-treated cells. Results suggested that the peptide C16 increased Tks5 and reactive oxygen species in prostate cancer cells. The role of C16 increasing Tks and reactive oxygen species are novel findings on invadopodia activity. K E Y W O R D S extracellular matrix, invadopodia, laminin, prostate cancer, reactive oxygen species, Tks4, Tks5
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.