Monoamine oxidase–B (MAO-B) has recently emerged as a potential therapeutic target for Alzheimer’s disease (AD) because of its association with aberrant γ-aminobutyric acid (GABA) production in reactive astrocytes. Although short-term treatment with irreversible MAO-B inhibitors, such as selegiline, improves cognitive deficits in AD patients, long-term treatments have shown disappointing results. We show that prolonged treatment with selegiline fails to reduce aberrant astrocytic GABA levels and rescue memory impairment in APP/PS1 mice, an animal model of AD, because of increased activity in compensatory genes for a GABA-synthesizing enzyme, diamine oxidase (DAO). We have developed a potent, highly selective, and reversible MAO-B inhibitor, KDS2010 (IC50 = 7.6 nM; 12,500-fold selectivity over MAO-A), which overcomes the disadvantages of the irreversible MAO-B inhibitor. Long-term treatment with KDS2010 does not induce compensatory mechanisms, thereby significantly attenuating increased astrocytic GABA levels and astrogliosis, enhancing synaptic transmission, and rescuing learning and memory impairments in APP/PS1 mice.
α-Pinene is a major monoterpene of the pine tree essential oils. It has been reported that α-pinene shows anxiolytic and hypnotic effects upon inhaled administration. However, hypnotic effect by oral supplementation and the molecular mechanism of α-pinene have not been determined yet. By combining in vivo sleep behavior, ex vivo electrophysiological recording from brain slices, and in silico molecular modeling, we demonstrate that (-)-α-pinene shows sleep enhancing property through a direct binding to GABA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site. The effect of (-)-α-pinene on sleep-wake profiles was evaluated by recording electroencephalogram and electromyogram. The molecular mechanism of (-)-α-pinene was investigated by electrophysiology and molecular docking study. (-)-α-pinene significantly increased the duration of non-rapid eye movement sleep (NREMS) and reduced the sleep latency by oral administration without affecting duration of rapid eye movement sleep and delta activity. (-)-α-pinene potentiated the GABA receptor-mediated synaptic response by increasing the decay time constant of sIPSCs in hippocampal CA1 pyramidal neurons. These effects of (-)-α-pinene on sleep and inhibitory synaptic response were mimicked by zolpidem, acting as a modulator for GABA-BZD receptors, and fully antagonized by flumazenil, an antagonist for GABA-BZD receptor. (-)-α-pinene was found to bind to aromatic residues of α1- and -γ2 subunits of GABA-BZD receptors in the molecular model. We conclude that (-)-α-pinene enhances the quantity of NREMS without affecting the intensity of NREMS by prolonging GABAergic synaptic transmission, acting as a partial modulator of GABA-BZD receptors and directly binding to the BZD binding site of GABA receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.