Current parenteral coronavirus disease 2019 (Covid-19) vaccines inadequately protect against infection of the upper respiratory tract. Additionally, antibodies generated by wild type (WT) spike-based vaccines poorly neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. To address the need for a second-generation vaccine, we have initiated a preclinical program to produce and evaluate a potential candidate. Our vaccine consists of recombinant Beta spike protein coadministered with synthetic CpG adjuvant. Both components are encapsulated within artificial cell membrane (ACM) polymersomes, synthetic nanovesicles efficiently internalized by antigen presenting cells, including dendritic cells, enabling targeted delivery of cargo for enhanced immune responses. ACM vaccine is immunogenic in C57BL/6 mice and Golden Syrian hamsters, evoking high serum IgG and neutralizing responses. Compared to an ACM-WT spike vaccine that generates predominantly WT-neutralizing antibodies, the ACM-Beta spike vaccine induces antibodies that neutralize WT and Beta viruses equally. Intramuscular (IM)-immunized hamsters are strongly protected from weight loss and other clinical symptoms after the Beta challenge but show delayed viral clearance in the upper airway. With intranasal (IN) immunization, however, neutralizing antibodies are generated in the upper airway concomitant with rapid and potent reduction of viral load. Moreover, antibodies are cross-neutralizing and show good activity against Omicron. Safety is evaluated in New Zealand white rabbits in a repeated dose toxicological study under Good Laboratory Practice (GLP) conditions. Three doses, IM or IN, at two-week intervals do not induce an adverse effect or systemic toxicity. Cumulatively, these results support the application for a Phase 1 clinical trial of ACM-polymersome-based Covid-19 vaccine ( identifier: NCT05385991).
A common challenge in Pt(IV) prodrug design is the limited repertoire of linkers available to connect the Pt(IV) scaffold with the bioactive payload. The commonly employed linkers are either too stable, leading to a linker artifact on the payload upon release, or too unstable, leading to premature release. In this study, we report the synthesis of a new class of Pt(IV) prodrugs using masked self-immolative 4-aminobenzyl linkers for controlled and traceless codrug delivery. Upon reduction of self-immolative Pt(IV) prodrugs, the detached axial ligands undergo decarboxylation and 1,6-elimination for payload release. Introduction of self-immolative linkers conferred good aqueous stability to the Pt(IV) codrug complex. Investigation revealed that efficient 1,6-elimination could be attributed to stabilization of the p-aza-quinone-methide intermediate. In particular, the self-immolative Pt(IV) prodrugs with cinnamate and coumarin derivatives were more potent than the coadministration of cisplatin with an unconjugated cinnamate or coumarin payload in vitro.
With the well-known advantages of additive manufacturing methods such as three-dimensional (3D) printing in drug delivery, it is disappointing that only one product has been successful in achieving regulatory approval in the past few years. Further research and development is required in this area to introduce more 3D printed products into the market. Our study investigates the potential of fixed dose combination solid dispersion drug products generated via 3D printing. Two model drugs—fluorescein sodium (FS) and 5-aminosalicyclic acid (5-ASA)—were impregnated onto a polyvinyl alcohol (PVA) filament, and the influence of solvent choice in optimal drug loading as well as other influences such as the physicochemical and mechanical properties of the resultant filaments were investigated prior to development of the resultant drug products. Key outcomes of this work included the improvement of filament drug loading by one- to threefold due to solvent choice on the basis of its polarity and the generation of a 3D-printed product confirmed to be a solid dispersion fixed dose combination with the two model drugs exhibiting favourable in vitro dissolution characteristics.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of coronavirus disease 2019 (Covid-19), an ongoing global public health emergency. Despite the availability of safe and efficacious vaccines, achieving herd immunity remains a challenge due in part to rapid viral evolution. Multiple variants of concern (VOCs) have emerged, the latest being the heavily mutated Omicron, which exhibits the highest resistance to neutralizing antibodies from past vaccination or infection. Currently approved vaccines generate robust systemic immunity, yet poor immunity at the respiratory tract. We have demonstrated that a polymersome-based protein subunit vaccine with wild type (WT) spike protein and CpG adjuvant induces robust systemic immunity (humoral and T cell responses) in mice. Both antigen and adjuvant are encapsulated in artificial cell membrane (ACM) polymersomes: synthetic, nanoscale vesicles that substantially enhance the immune response through efficient delivery to dendritic cells. In the present study, we have formulated a vaccine candidate with the spike protein from Beta variant and assessed its immunogenicity in golden Syrian hamsters. Two doses of ACM-Beta spike vaccine administered via intramuscular (IM) injection evoke modest serum neutralizing titers that are equally efficacious towards WT and Beta viruses. In contrast, the ACM-WT spike vaccine induces a predominantly WT-specific serum neutralizing response with pronounced reduction in potency towards the Beta variant. Remarkably, immunogenicity of the ACM-Beta spike vaccine is greatly enhanced through intranasal (IN) administration. Following IN challenge with the Beta variant, IM-immunized hamsters are fully protected from disease but not infection, displaying similar peak viral RNA loads in oral swabs as non-vaccinated controls. In contrast, hamsters IN vaccinated with ACM-Beta spike vaccine are protected from disease and infection, exhibiting a ~100-fold drop in total and subgenomic RNA load as early as day 2 post challenge. We further demonstrate that nasal washes from IN- but not IM-immunized animals possess virus neutralizing activity that is broadly efficacious towards Delta and Omicron variants. Altogether, our results show IN administration of ACM-Beta spike vaccine to evoke systemic and mucosal antibodies that cross-neutralize multiple SARS-CoV-2 VOCs. Our work supports IN administration of ACM-Beta spike vaccine for a next-generation vaccination strategy that not only protects against disease but also an infection of the respiratory tract, thus potentially preventing asymptomatic transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.