Aim: Immunological checkpoint therapy is considered a powerful method for cancer therapy and acts by re-activating autologous T cells to kill the cancer cell. Myocarditis cases have been reported in cancer patients after immunological therapy; for example, nivolumab treatment is a monoclonal antibody that blocks programmed cell death-1/programmed cell death ligand-1 ligand interaction. This project provided insight into the inflammatory response as a benchmark to investigate the potential cardiotoxic effect of T cell response to the programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) axis in regulating cardiomyocyte injury in vitro. Methods and Results: We investigated cardiomyopathy resulted from the PD-1/PD-L1 axis blockade using the anti-PD-1 antibody in Rockefeller University embryonic stem cells-derived cardiomyocytes (RUES2-CMs) and a melanoma tumor-bearing murine model. We found that nivolumab alone did not induce inflammatory-related proteins, including PD-L1 expression, and did not induce apoptosis, which was contrary to doxorubicin, a cardiotoxic chemotherapy drug. However, nivolumab was able to exacerbate the immune response by increasing cytokine and inflammatory gene expression in RUES2-CMs when co-cultured with CD4+ T lymphocytes and induced apoptosis. This effect was not observed when RUES2-CMs were co-cultured with CD8+ T lymphocytes. The in vivo model showed that the heart function of tumor-bearing mice was decreased after treatment with anti-PD-1 antibody and demonstrated a dilated left ventricle histological examination. The dilated left ventricle was associated with an infiltration of CD4+ and CD8+ T lymphocytes into the myocardium. PD-L1 and inflammatory-associated gene expression were significantly increased in anti-PD-1-treated tumor-bearing mice. Cleaved caspase-3 and mouse plasma cardiac troponin I expressions were increased significantly. Conclusion: PD-L1 expression on cardiomyocytes suppressed T-cell function. Blockade of PD-1 by nivolumab enhanced cardiomyocyte inflammation and apoptosis through the enhancement of T-cell response towards cardiomyocytes.
Chemotherapy-induced peripheral neuropathy (CIPN) is a severe adverse effect that occurs secondary to anticancer treatments and has no known preventive or therapeutic strategy. Therapeutic hypothermia has been shown to be effective in protecting against central and peripheral nervous system injuries. However, the effects of therapeutic hypothermia on CIPN have rarely been explored. We induced lower back hypothermia (LBH) in an established paclitaxel-induced CIPN rat model and found that the paclitaxel-induced impairments observed in behavioral, electrophysiological, and histological impairments were inhibited by LBH when applied at an optimal setting of 24°C to the sciatic nerve and initiated 90 minutes before paclitaxel infusion. Lower back hypothermia also inhibited the paclitaxel-induced activation of astroglia and microglia in the spinal cord and macrophage infiltration into and neuronal injury in the dorsal root ganglia and sciatic nerves. Furthermore, LBH decreased the local blood flow and local tissue concentrations of paclitaxel. Finally, in NOD/SCID mice inoculated with cancer cells, the antiproliferative effect of paclitaxel was not affected by the distal application of LBH. In conclusion, our findings indicate that early exposure to regional hypothermia alleviates paclitaxel-induced peripheral neuropathy. Therapeutic hypothermia may therefore represent an economical and nonpharmaceutical preventive strategy for CIPN in patients with localized solid tumors.
The Arizona Study of Aging and Neurodegenerative Disorders/Brain and Body Donation Program at Banner Sun Health Research Institute (BSHRI) is a longitudinal clinicopathological study with a current enrollment of more than 900 living subjects for aging and neurodegenerative disease research. Annual clinical assessments are done by cognitive and movement neurologists and neuropsychologists. Brain and body tissues are collected at a median postmortem interval of 3.0 h for neuropathological diagnosis and banking. Since 2018, the program has undertaken banking of scalp fibroblasts derived from neuropathologically characterized donors with Alzheimer’s disease, Parkinson’s disease, and other neurodegenerative diseases. Here, we describe the procedure development and cell characteristics from 14 male and 15 female donors (mean ± SD of age: 83.6 ± 12.2). Fibroblasts from explant cultures were banked at passage 3. The results of mRNA analysis showed positive expression of fibroblast activation protein, vimentin, fibronectin, and THY1 cell surface antigen. We also demonstrated that the banked fibroblasts from a postmortem elderly donor were successfully reprogramed to human-induced pluripotent stem cells (hiPSCs). Taken together, we have demonstrated the successful establishment of a human autopsy-derived fibroblast banking program. The cryogenically preserved cells are available for request at the program website of the BSHRI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.