Efficient genome editing with Cas9–sgRNA in vivo has required the use of viral delivery systems, which have limitations for clinical applications. Translational efforts to develop other RNA therapeutics have shown that judicious chemical modification of RNAs can improve therapeutic efficacy by reducing susceptibility to nuclease degradation. Guided by the structure of the Cas9–sgRNA complex, we identify regions of sgRNA that can be modified while maintaining or enhancing genome-editing activity, and we develop an optimal set of chemical modifications for in vivo applications. Using lipid nanoparticle formulations of these enhanced sgRNAs (e-sgRNA) and mRNA encoding Cas9, we show that a single intravenous injection into mice induces >80% editing of Pcsk9 in the liver. Serum Pcsk9 is reduced to undetectable levels, and cholesterol levels are significantly lowered about 35% to 40% in animals. This strategy may enable non-viral, Cas9-based genome editing in the liver in clinical settings.
CRISPR–Cas9 is a versatile RNA-guided genome editing tool. Here we demonstrate that partial replacement of RNA nucleotides with DNA nucleotides in CRISPR RNA (crRNA) enables efficient gene editing in human cells. This strategy of partial DNA replacement retains on-target activity when used with both crRNA and sgRNA, as well as with multiple guide sequences. Partial DNA replacement also works for crRNA of Cpf1, another CRISPR system. We find that partial DNA replacement in the guide sequence significantly reduces off-target genome editing through focused analysis of off-target cleavage, measurement of mismatch tolerance and genome-wide profiling of off-target sites. Using the structure of the Cas9–sgRNA complex as a guide, the majority of the 3′ end of crRNA can be replaced with DNA nucleotide, and the 5 - and 3′-DNA-replaced crRNA enables efficient genome editing. Cas9 guided by a DNA–RNA chimera may provide a generalized strategy to reduce both the cost and the off-target genome editing in human cells.
Hepatocellular carcinoma (HCC) is an aggressive subtype of liver cancer with few effective treatments, and the underlying mechanisms that drive HCC pathogenesis remain poorly characterized. Identifying genes and pathways essential for HCC cell growth will aid the development of new targeted therapies for HCC. Using a kinome CRISPR screen in three human HCC cell lines, we identified transformation/transcription domain‐associated protein (TRRAP) as an essential gene for HCC cell proliferation. TRRAP has been implicated in oncogenic transformation, but how it functions in cancer cell proliferation is not established. Here, we show that depletion of TRRAP or its co‐factor, histone acetyltransferase KAT5, inhibits HCC cell growth through induction of p53‐independent and p21‐independent senescence. Integrated cancer genomics analyses using patient data and RNA sequencing identified mitotic genes as key TRRAP/KAT5 targets in HCC, and subsequent cell cycle analyses revealed that TRRAP‐depleted and KAT5‐depleted cells are arrested at the G2/M phase. Depletion of topoisomerase II alpha (TOP2A), a mitotic gene and TRRAP/KAT5 target, was sufficient to recapitulate the senescent phenotype of TRRAP/KAT5 knockdown. Conclusion: Our results uncover a role for TRRAP/KAT5 in promoting HCC cell proliferation by activating mitotic genes. Targeting the TRRAP/KAT5 complex is a potential therapeutic strategy for HCC.
CRISPR/Cas9 has revolutionized cancer mouse models. Although loss-of-function genetics by CRISPR/Cas9 is well-established, generating gain-of-function alleles in somatic cancer models is still challenging because of the low efficiency of gene knock-in. Here we developed CRISPR-based Somatic Oncogene kNock-In for Cancer Modeling (CRISPR-SONIC), a method for rapid in vivo cancer modeling using homology-independent repair to integrate oncogenes at a targeted genomic locus. Using a dual guide RNA strategy, we integrated a plasmid donor in the 3′-UTR of mouse β-actin, allowing co-expression of reporter genes or oncogenes from the β-actin promoter. We showed that knock-in of oncogenic Ras and loss of p53 efficiently induced intrahepatic cholangiocarcinoma in mice. Further, our strategy can generate bioluminescent liver cancer to facilitate tumor imaging. This method simplifies in vivo gain-of-function genetics by facilitating targeted integration of oncogenes.
Electronic supplementary material
The online version of this article (10.1186/s13073-019-0627-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.